Transition state docking : a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis

A strategy for pinpointing favorable noncovalent interactions between transition states and active sites of biological catalysts is described. This strategy combines high-level quantum mechanical calculations of transition state geometries with an automated docking procedure using AutoDock. By apply...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 23(2002), 1 vom: 15. Jan., Seite 84-95
1. Verfasser: Tantillo, Dean J (VerfasserIn)
Weitere Verfasser: Houk, K N
Format: Aufsatz
Sprache:English
Veröffentlicht: 2002
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Comparative Study Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, U.S. Gov't, P.H.S. Amino Acids Antibodies, Catalytic Benzene Derivatives Esters Haptens Organophosphonates mehr... Norleucine 832C8OV84S
LEADER 01000caa a22002652c 4500
001 NLM117963313
003 DE-627
005 20250203045431.0
007 tu
008 231222s2002 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0393.xml 
035 |a (DE-627)NLM117963313 
035 |a (NLM)11913392 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tantillo, Dean J  |e verfasserin  |4 aut 
245 1 0 |a Transition state docking  |b a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis 
264 1 |c 2002 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 22.05.2002 
500 |a Date Revised 21.11.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A strategy for pinpointing favorable noncovalent interactions between transition states and active sites of biological catalysts is described. This strategy combines high-level quantum mechanical calculations of transition state geometries with an automated docking procedure using AutoDock. By applying this methodology to antibody-catalyzed hydrolyses of aryl esters (by the 48G7, CNJ206, and 17E8 families of antibodies), varying levels of catalysis are explained in terms of specific hydrogen bonding interactions between combining site residues and transition states. Although these families of antibodies were produced in separate experiments by different researchers using related but different haptens, the mechanism of transition state stabilization appears to be highly conserved. Despite being elicited in response to anionic phosphonate haptens, the best catalysts often utilize hydrogen bond acceptors to stabilize transition states. A mutant of antibody CNJ206, designed based on this observation and predicted to be a better catalyst, is proposed. In the case of antibody 48G7, affinity maturation is shown to produce a catalyst that is highly selective for one of two enantiomeric transition states from a nonselective germline precursor 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Research Support, U.S. Gov't, P.H.S. 
650 7 |a Amino Acids  |2 NLM 
650 7 |a Antibodies, Catalytic  |2 NLM 
650 7 |a Benzene Derivatives  |2 NLM 
650 7 |a Esters  |2 NLM 
650 7 |a Haptens  |2 NLM 
650 7 |a Organophosphonates  |2 NLM 
650 7 |a Norleucine  |2 NLM 
650 7 |a 832C8OV84S  |2 NLM 
700 1 |a Houk, K N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 23(2002), 1 vom: 15. Jan., Seite 84-95  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:23  |g year:2002  |g number:1  |g day:15  |g month:01  |g pages:84-95 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 23  |j 2002  |e 1  |b 15  |c 01  |h 84-95