|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM117946869 |
003 |
DE-627 |
005 |
20250203045259.0 |
007 |
tu |
008 |
231222s2002 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0393.xml
|
035 |
|
|
|a (DE-627)NLM117946869
|
035 |
|
|
|a (NLM)11911657
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Lucarelli, M
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Simultaneous cycle sequencing assessment of (TG)m and Tn tract length in CFTR gene
|
264 |
|
1 |
|c 2002
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 06.09.2002
|
500 |
|
|
|a Date Revised 28.09.2018
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The lengths of the dinucleotide (TG)m and mononucleotide Tn repeats, both located at the intron 8/exon 9 splice acceptor site of the cystic fibrosis transmembrane conductance regulator (CFTR) gene whose mutations cause cysticfibrosis (CF), have been shown to influence the skipping of exon 9 in CFTR mRNA. This exon 9-skipped mRNA encodes a nonfunctional protein and is associated with various clinical manifestations in CF As a result of growing interest in these repeats, several assessment methods have been developed, most of which are, however, cumbersome, multi-step, and time consuming. Here, we describe a rapid methodfor the simultaneous assessment of the lengths of both (TG)m and Tn repeats, based on a nonradioactive cycle sequencing procedure that can be performed even without DNA extraction. This method determines the lengths of the (TG)m and Tn tracts of both alleles, which in our samples ranged from TG8 to TG12 in the presence of T5, T7, and T9 alleles, and also fully assesses the aplotypes. In addition, the repeats in the majority of these samples can be assessed by single-strand sequencing, with no need to sequence the other strand, thereby saving a considerable amount of time and effort
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Technical Report
|
650 |
|
4 |
|a Journal Article
|
650 |
|
7 |
|a CFTR protein, human
|2 NLM
|
650 |
|
7 |
|a DNA, Single-Stranded
|2 NLM
|
650 |
|
7 |
|a Cystic Fibrosis Transmembrane Conductance Regulator
|2 NLM
|
650 |
|
7 |
|a 126880-72-6
|2 NLM
|
700 |
1 |
|
|a Grandoni, F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Rossi, T
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Mazzilli, F
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Antonelli, M
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Strom, R
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t BioTechniques
|d 1993
|g 32(2002), 3 vom: 28. März, Seite 540-2, 544-7
|w (DE-627)NLM012627046
|x 0736-6205
|7 nnns
|
773 |
1 |
8 |
|g volume:32
|g year:2002
|g number:3
|g day:28
|g month:03
|g pages:540-2, 544-7
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_21
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_50
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_99
|
912 |
|
|
|a GBV_ILN_121
|
912 |
|
|
|a GBV_ILN_130
|
912 |
|
|
|a GBV_ILN_227
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_618
|
912 |
|
|
|a GBV_ILN_640
|
912 |
|
|
|a GBV_ILN_754
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2002
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2012
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2023
|
912 |
|
|
|a GBV_ILN_2035
|
912 |
|
|
|a GBV_ILN_2040
|
912 |
|
|
|a GBV_ILN_2060
|
912 |
|
|
|a GBV_ILN_2099
|
912 |
|
|
|a GBV_ILN_2105
|
912 |
|
|
|a GBV_ILN_2121
|
912 |
|
|
|a GBV_ILN_2470
|
951 |
|
|
|a AR
|
952 |
|
|
|d 32
|j 2002
|e 3
|b 28
|c 03
|h 540-2, 544-7
|