Distribution of ammonium-N in the water-soil interface of a surface-flow constructed wetland for swine wastewater treatment
Most livestock wastewaters treated in constructed wetlands are typically rich in ammonium N. The objective of this study was to evaluate the soil-water ammonium distribution and the diffusive flux through the soil-water interface. Wetland system 1 (WS1) was planted to rush and bulrushes, and wetland...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 44(2001), 11-12 vom: 31., Seite 157-62 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2001
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Manure Quaternary Ammonium Compounds Soil Nitrogen N762921K75 |
Zusammenfassung: | Most livestock wastewaters treated in constructed wetlands are typically rich in ammonium N. The objective of this study was to evaluate the soil-water ammonium distribution and the diffusive flux through the soil-water interface. Wetland system 1 (WS1) was planted to rush and bulrushes, and wetland system 2 (WS2) was planted to bur-reed and cattails. Nitrogen was applied at a rate of 2.5 g m(-2) d(-1). Interstitial soil water was sampled at 9, 24, 50, and 70 m from the inlet. In both wetlands, we found that NH4+ diffusion gradient and N losses were highest in the wetland system with lowest water depth. From other studies, we knew that shallower depths may have promoted a more effective interfacing of nitrifying and denitrifying environments. In turn, this N reduction in the water column may be the reason for steady NH4+-N upward diffusion fluxes. The assumed mechanism for N removal has been nitrification and denitrification but ammonia volatilization could also have occurred. Although diffusion may explain a significant portion of the material transport between the soil-water interface, the large differences in concentrations between outlet and inlet need further explanation |
---|---|
Beschreibung: | Date Completed 25.06.2002 Date Revised 16.11.2017 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |