High-resolution analysis of tomato leaf elongation : the application of novel time-series analysis techniques

This paper demonstrates the use of a novel suite of data-based, recursive modelling techniques for the investigation of biological and other time-series data, including high resolution leaf elongation. The Data-Based Mechanistic (DBM) modelling methodology rejects the common practice of empirical cu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 52(2001), 362 vom: 25. Sept., Seite 1925-32
1. Verfasser: Price, L E (VerfasserIn)
Weitere Verfasser: Bacon, M A, Young, P C, Davies, W J
Format: Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Water 059QF0KO0R
LEADER 01000caa a22002652 4500
001 NLM114192421
003 DE-627
005 20250202192024.0
007 tu
008 231222s2001 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0381.xml 
035 |a (DE-627)NLM114192421 
035 |a (NLM)11520881 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Price, L E  |e verfasserin  |4 aut 
245 1 0 |a High-resolution analysis of tomato leaf elongation  |b the application of novel time-series analysis techniques 
264 1 |c 2001 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 31.12.2001 
500 |a Date Revised 07.12.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper demonstrates the use of a novel suite of data-based, recursive modelling techniques for the investigation of biological and other time-series data, including high resolution leaf elongation. The Data-Based Mechanistic (DBM) modelling methodology rejects the common practice of empirical curve fitting for a more objective approach where the model structure is not assumed a priori, but instead is identified directly from the data series in a stochastic form. Further, this novel approach takes advantage of the latest techniques in optimal recursive estimation of non-stationary and non-linear time-series. Here, the utility and ease of use of these techniques is demonstrated in the examination of two time-series of leaf elongation in an expanding leaf of tomato (Lycopersicon esculentum L. cv. Ailsa Craig) growing in a root pressure vessel (RPV). Using this analysis, the component signals of the elongation series are extracted and considered in relation to physiological processes. It is hoped that this paper will encourage the wider use of these new techniques, as well as the associated Data-Based Mechanistic (DBM) modelling strategy, in analytical plant physiology 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 7 |a Water  |2 NLM 
650 7 |a 059QF0KO0R  |2 NLM 
700 1 |a Bacon, M A  |e verfasserin  |4 aut 
700 1 |a Young, P C  |e verfasserin  |4 aut 
700 1 |a Davies, W J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 52(2001), 362 vom: 25. Sept., Seite 1925-32  |w (DE-627)NLM098182706  |x 0022-0957  |7 nnns 
773 1 8 |g volume:52  |g year:2001  |g number:362  |g day:25  |g month:09  |g pages:1925-32 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 52  |j 2001  |e 362  |b 25  |c 09  |h 1925-32