Evidence for down-regulation of ethanolic fermentation and K+ effluxes in the coleoptile of rice seedlings during prolonged anoxia

Ethanolic fermentation, the predominant catabolic pathway in anoxia-tolerant rice coleoptiles, was manipulated in excised and 'aged' tissues via glucose feeding. Coleoptiles with exogenous glucose survived 60 h of anoxia, as evidenced by vigorous rates of K+ and phosphate net uptake and gr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 52(2001), 360 vom: 16. Juli, Seite 1507-17
1. Verfasser: Colmer, T D (VerfasserIn)
Weitere Verfasser: Huang, S, Greenway, H
Format: Aufsatz
Sprache:English
Veröffentlicht: 2001
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Phosphates Ethanol 3K9958V90M Adenosine Triphosphate 8L70Q75FXE Glucose IY9XDZ35W2 Potassium mehr... RWP5GA015D Oxygen S88TT14065
Beschreibung
Zusammenfassung:Ethanolic fermentation, the predominant catabolic pathway in anoxia-tolerant rice coleoptiles, was manipulated in excised and 'aged' tissues via glucose feeding. Coleoptiles with exogenous glucose survived 60 h of anoxia, as evidenced by vigorous rates of K+ and phosphate net uptake and growth of roots and shoots when re-aerated. In contrast, coleoptiles without exogenous glucose showed net losses of K+ and phosphates starting 12 h after anoxia was imposed and these did not recover fully when re-aerated after 60 h of anoxia. Ethanol production (micromol x g(-1) FW x h(-1)) declined from about 7.5 during the first 12 h of anoxia to 5 or 2.2 after 48-60 h, in coleoptiles with or without exogenous glucose, respectively. Carbohydrate concentrations changed only slightly in anoxic coleoptiles with exogenous glucose due to net glucose uptake at 2.6 micromol x g(-1) FW x h(-1). Ethanolic fermentation, and therefore ATP production, may have been down-regulated after an initial period of acclimation to anoxia in coleoptiles with exogenous glucose. Maintenance requirements for energy were assessed to be 3.4-7.6-fold lower in these anoxic coleoptiles than published estimates for non-growing aerated leaf tissues. A modest part of the required economy in energy consumption would have been derived from diminished ion transport; anoxia reduced K+ and phosphate net uptake by 70-90% in these coleoptiles. K+ efflux was 10-fold lower in anoxic than in aerated coleoptiles with exogenous glucose. Using the unidirectional efflux equation, the membrane permeability to K+ was estimated to be 17-fold lower in anoxic than in aerated coleoptiles, presumably due to predominantly closed K+ channels
Beschreibung:Date Completed 04.10.2001
Date Revised 13.05.2019
published: Print
Citation Status MEDLINE
ISSN:1460-2431