Modeling effect of remaining nitrate on phosphorus removal in SBR
Nitrate shock loading experiments were conducted in a bench scale SBR to investigate the effect of nitrate on phosphorus removal. After achieving satisfactory phosphorus removal under steady state operation, initial NO3-N concentration amounting to 10 and 20 mg/L was fed at the beginning of the cycl...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 43(2001), 3 vom: 18., Seite 175-82 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2001
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Nitrates Phosphorus 27YLU75U4W |
Zusammenfassung: | Nitrate shock loading experiments were conducted in a bench scale SBR to investigate the effect of nitrate on phosphorus removal. After achieving satisfactory phosphorus removal under steady state operation, initial NO3-N concentration amounting to 10 and 20 mg/L was fed at the beginning of the cycle. It was observed that, 10 mg/L of NO3-N suppressed phosphorus release during the feed and mix phases. Organic consumption for denitrification lead to limited PHA storage by phosphorus removing bacteria, resulting in less PO4-P removal. For 20 mg/L, influent organic substrate was not sufficient even for complete denitrification, thus leading to the presence of higher NO3-N and PO4-P in effluent. To explain the dynamics of the nutrient removal system under the transient loading, a SBR model based on IAWQ ASM2 was implemented. After adjusting PHA contents, model simulations well predicted dynamic changes of nitrate and phosphate concentrations during a cycle. Based on the model simulations, competition of COD substrate among denitrification, fermentation and oxygen respiration were investigated by calculating their consumption rates during mixing phase. In addition, a nitrate disappearance model was proposed and implemented in conjunction with a settling model to predict remaining and effluent nitrate in a cycle of SBR. Furthermore, integrated model simulations highlighted the effect of remaining nitrate on phosphorus release considering different options of reactions in settling phase |
---|---|
Beschreibung: | Date Completed 28.06.2001 Date Revised 21.11.2013 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |