Shock wave dynamics in a discrete nonlinear Schrodinger equation with internal losses

Propagation of a shock wave (SW), converting an energy-carrying domain into an empty one, is studied in a discrete version of the normal-dispersion nonlinear Schrodinger equation with viscosity, which may describe, e.g., an array of optical fibers in a weakly lossy medium. It is found that the SW in...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 62(2000), 6 Pt B vom: 05. Dez., Seite 8651-6
1. Verfasser: Salerno (VerfasserIn)
Weitere Verfasser: Malomed, Konotop
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM110521080
003 DE-627
005 20250202101259.0
007 tu
008 231222s2000 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0369.xml 
035 |a (DE-627)NLM110521080 
035 |a (NLM)11138166 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Salerno  |e verfasserin  |4 aut 
245 1 0 |a Shock wave dynamics in a discrete nonlinear Schrodinger equation with internal losses 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Propagation of a shock wave (SW), converting an energy-carrying domain into an empty one, is studied in a discrete version of the normal-dispersion nonlinear Schrodinger equation with viscosity, which may describe, e.g., an array of optical fibers in a weakly lossy medium. It is found that the SW in the discrete model is stable, as well as in its earlier studied continuum counterpart. In a strongly discrete case, the dependence of the SWs velocity upon the amplitude of the energy-carrying background is found to obey a simple linear law, which differs by a value of the proportionality coefficient from a similar law in the continuum model. For the underdamped case, the velocity of the shock wave is found to be vanishing along with the viscosity constant. We argue that the latter feature is universal for long but finite systems, both discrete and continuum. The dependence of the SW's width on the parameters of the system is also discussed 
650 4 |a Journal Article 
700 1 |a Malomed  |e verfasserin  |4 aut 
700 1 |a Konotop  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 62(2000), 6 Pt B vom: 05. Dez., Seite 8651-6  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:62  |g year:2000  |g number:6 Pt B  |g day:05  |g month:12  |g pages:8651-6 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 62  |j 2000  |e 6 Pt B  |b 05  |c 12  |h 8651-6