Stochastic dynamics of time correlation in complex systems with discrete time

In this paper we present the concept of description of random processes in complex systems with discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time correlation functions (TCFs). We have introduced the d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 62(2000), 5 Pt A vom: 01. Nov., Seite 6178-94
1. Verfasser: Yulmetyev (VerfasserIn)
Weitere Verfasser: Hanggi, Gafarov
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM110171977
003 DE-627
005 20250202091610.0
007 tu
008 231222s2000 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0368.xml 
035 |a (DE-627)NLM110171977 
035 |a (NLM)11101949 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yulmetyev  |e verfasserin  |4 aut 
245 1 0 |a Stochastic dynamics of time correlation in complex systems with discrete time 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper we present the concept of description of random processes in complex systems with discrete time. It involves the description of kinetics of discrete processes by means of the chain of finite-difference non-Markov equations for time correlation functions (TCFs). We have introduced the dynamic (time dependent) information Shannon entropy S(i)(t) where i=0,1,2,3,ellipsis, as an information measure of stochastic dynamics of time correlation (i=0) and time memory (i=1,2,3,ellipsis). The set of functions S(i)(t) constitute the quantitative measure of time correlation disorder (i=0) and time memory disorder (i=1,2,3,ellipsis) in complex system. The theory developed started from the careful analysis of time correlation involving dynamics of vectors set of various chaotic states. We examine two stochastic processes involving the creation and annihilation of time correlation (or time memory) in details. We carry out the analysis of vectors' dynamics employing finite-difference equations for random variables and the evolution operator describing their natural motion. The existence of TCF results in the construction of the set of projection operators by the usage of scalar product operation. Harnessing the infinite set of orthogonal dynamic random variables on a basis of Gram-Shmidt orthogonalization procedure tends to creation of infinite chain of finite-difference non-Markov kinetic equations for discrete TCFs and memory functions (MFs). The solution of the equations above thereof brings to the recurrence relations between the TCF and MF of senior and junior orders. This offers new opportunities for detecting the frequency spectra of power of entropy function S(i)(t) for time correlation (i=0) and time memory (i=1,2,3,ellipsis). The results obtained offer considerable scope for attack on stochastic dynamics of discrete random processes in a complex systems. Application of this technique on the analysis of stochastic dynamics of RR intervals from human ECG's shows convincing evidence for a non-Markovian phenomemena associated with a peculiarities in short- and long-range scaling. This method may be of use in distinguishing healthy from pathologic data sets based in differences in these non-Markovian properties 
650 4 |a Journal Article 
700 1 |a Hanggi  |e verfasserin  |4 aut 
700 1 |a Gafarov  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 62(2000), 5 Pt A vom: 01. Nov., Seite 6178-94  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:62  |g year:2000  |g number:5 Pt A  |g day:01  |g month:11  |g pages:6178-94 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 62  |j 2000  |e 5 Pt A  |b 01  |c 11  |h 6178-94