Spinodal decomposition and the tomita sum rule
The scaling properties of a phase-ordering system with a conserved order parameter are studied. The theory developed leads to scaling functions satisfying certain general properties including the Tomita sum rule. The theory also gives good agreement with numerical results for the order parameter sca...
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 62(2000), 5 Pt A vom: 01. Nov., Seite 5967-77 |
---|---|
1. Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2000
|
Zugriff auf das übergeordnete Werk: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics |
Schlagworte: | Journal Article |
Zusammenfassung: | The scaling properties of a phase-ordering system with a conserved order parameter are studied. The theory developed leads to scaling functions satisfying certain general properties including the Tomita sum rule. The theory also gives good agreement with numerical results for the order parameter scaling function in three dimensions. The values of the associated nonequilibrium decay exponents are given by the known lower bounds |
---|---|
Beschreibung: | Date Revised 20.11.2019 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1063-651X |