Out-of-equilibrium dynamics of the hopfield model in its spin-glass phase

In this paper, we study numerically the out-of-equilibrium dynamics of the Hopfield model for associative memory inside its spin-glass phase. Aside from its interest as a neural network model, it can also be considered as a prototype of a fully connected magnetic system with randomness and frustrati...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 62(2000), 4 Pt B vom: 27. Okt., Seite 5721-8
1. Verfasser: Montemurro (VerfasserIn)
Weitere Verfasser: Tamarit, Stariolo, Cannas
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM110045947
003 DE-627
005 20250202085651.0
007 tu
008 231222s2000 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0367.xml 
035 |a (DE-627)NLM110045947 
035 |a (NLM)11089131 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Montemurro  |e verfasserin  |4 aut 
245 1 0 |a Out-of-equilibrium dynamics of the hopfield model in its spin-glass phase 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we study numerically the out-of-equilibrium dynamics of the Hopfield model for associative memory inside its spin-glass phase. Aside from its interest as a neural network model, it can also be considered as a prototype of a fully connected magnetic system with randomness and frustration. By adjusting the ratio between the number of stored configurations p and the total number of neurons N, one can control the phase-space structure, whose complexity can vary between the simple mean-field ferromagnet (when p=1) and that of the Sherrington Kirkpatrick spin-glass model (for a properly taken limit of an infinite number of patterns). In particular, little attention has been devoted to the spin-glass phase of this model. In this paper, we analyze the two-time autocorrelation function, the decay of the magnetization and the distribution of overlaps between states. The results show that within the spin-glass phase of the model, the dynamics exhibits aging phenomena and presents features that suggest a non trivial breaking of replica symmetry 
650 4 |a Journal Article 
700 1 |a Tamarit  |e verfasserin  |4 aut 
700 1 |a Stariolo  |e verfasserin  |4 aut 
700 1 |a Cannas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 62(2000), 4 Pt B vom: 27. Okt., Seite 5721-8  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:62  |g year:2000  |g number:4 Pt B  |g day:27  |g month:10  |g pages:5721-8 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 62  |j 2000  |e 4 Pt B  |b 27  |c 10  |h 5721-8