Symbolic dynamics of event-related brain potentials

We apply symbolic dynamics techniques such as word statistics and measures of complexity to nonstationary and noisy multivariate time series of electroencephalograms (EEG) in order to estimate event-related brain potentials (ERP). Their significance against surrogate data as well as between differen...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 62(2000), 4 Pt B vom: 27. Okt., Seite 5518-41
1. Verfasser: Graben, P (VerfasserIn)
Weitere Verfasser: Saddy, J D, Schlesewsky, M, Kurths, J
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM110045742
003 DE-627
005 20250202085649.0
007 tu
008 231222s2000 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0367.xml 
035 |a (DE-627)NLM110045742 
035 |a (NLM)11089111 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Graben, P  |e verfasserin  |4 aut 
245 1 0 |a Symbolic dynamics of event-related brain potentials 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 05.01.2001 
500 |a Date Revised 28.07.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We apply symbolic dynamics techniques such as word statistics and measures of complexity to nonstationary and noisy multivariate time series of electroencephalograms (EEG) in order to estimate event-related brain potentials (ERP). Their significance against surrogate data as well as between different experimental conditions is tested. These methods are validated by simulations using stochastic dynamical systems with time-dependent control parameters and compared with traditional ERP-analysis techniques. Continuous EEG data are cut into epochs according to stimuli events presented to the subjects. These ensembles of time series can be considered as ensembles of trajectories given by some dynamical systems. We employ a statistical mechanics approach motivated by the Frobenius-Perron equation and apply it to coarse-grained symbolic descriptions of the dynamics. We develop time-dependent measures of complexity founded on running cylinder sets and show that these quantities are able to distinguish simulated data obtained by different control parameters as well as experimental data between different experimental conditions. As a first finding, our approach restores the well-known ERP components and it reveals additionally qualitative changes in the EEG that cannot be detected by means of the traditional techniques. We criticize the prerequisites of the traditional approach to ERP analysis and propose to consider ERP instead in terms of dynamical system theory and information theory 
650 4 |a Journal Article 
700 1 |a Saddy, J D  |e verfasserin  |4 aut 
700 1 |a Schlesewsky, M  |e verfasserin  |4 aut 
700 1 |a Kurths, J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 62(2000), 4 Pt B vom: 27. Okt., Seite 5518-41  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:62  |g year:2000  |g number:4 Pt B  |g day:27  |g month:10  |g pages:5518-41 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 62  |j 2000  |e 4 Pt B  |b 27  |c 10  |h 5518-41