Phase equilibria in an athermal solution of platelike particles

A molecular frame lattice theory of athermal solutions of platelike particles is presented. Steric repulsion between the particles is assumed to be the sole interaction present in the system (the athermal limit). The theory is developed for flat rectangular parallelepipeds, and examined in detail fo...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 62(2000), 4 Pt A vom: 27. Okt., Seite 5011-26
1. Verfasser: Sokolowska (VerfasserIn)
Weitere Verfasser: Moscicki
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM110045130
003 DE-627
005 20250202085645.0
007 tu
008 231222s2000 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0367.xml 
035 |a (DE-627)NLM110045130 
035 |a (NLM)11089050 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sokolowska  |e verfasserin  |4 aut 
245 1 0 |a Phase equilibria in an athermal solution of platelike particles 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A molecular frame lattice theory of athermal solutions of platelike particles is presented. Steric repulsion between the particles is assumed to be the sole interaction present in the system (the athermal limit). The theory is developed for flat rectangular parallelepipeds, and examined in detail for two opposite shape anisotropy limits: rods and square boards. Numerical calculations show that in a pure system of either long rods or square boards, a nematic phase is formed once the shape anisotropy exceeds some critical value: for rods the critical aspect ratio x(crit)(r) is 8. 019, and for boards x(crit)(d) is 3.742. For higher values of the ratio, a narrow concentration region of coexistence for the nematic and isotropic phases, which separates the isotropic (low concentration) from the nematic (high concentration) solution, is found on dilution of each system 
650 4 |a Journal Article 
700 1 |a Moscicki  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 62(2000), 4 Pt A vom: 27. Okt., Seite 5011-26  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:62  |g year:2000  |g number:4 Pt A  |g day:27  |g month:10  |g pages:5011-26 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 62  |j 2000  |e 4 Pt A  |b 27  |c 10  |h 5011-26