Absorbing-state phase transitions in fixed-energy sandpiles

We study sandpile models as closed systems, with the conserved energy density zeta playing the role of an external parameter. The critical energy density zeta(c) marks a nonequilibrium phase transition between active and absorbing states. Several fixed-energy sandpiles are studied in extensive simul...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 62(2000), 4 Pt A vom: 27. Okt., Seite 4564-82
1. Verfasser: Vespignani (VerfasserIn)
Weitere Verfasser: Dickman, Munoz, Zapperi
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We study sandpile models as closed systems, with the conserved energy density zeta playing the role of an external parameter. The critical energy density zeta(c) marks a nonequilibrium phase transition between active and absorbing states. Several fixed-energy sandpiles are studied in extensive simulations of stationary and transient properties, as well as the dynamics of roughening in an interface-height representation. Our primary goal is to identify the universality classes of such models, in hopes of assessing the validity of two recently proposed approaches to sandpiles: a phenomenological continuum Langevin description with absorbing states, and a mapping to driven interface dynamics in random media
Beschreibung:Date Revised 20.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1063-651X