Periodic elastic medium in which periodicity is relevant

We analyze, in both (1+1) and (2+1) dimensions, a periodic elastic medium in which the periodicity is such that at long distances the behavior is always in the random-substrate universality class. This contrasts with the models with an additive periodic potential in which, according to the field-the...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 62(2000), 3 Pt A vom: 27. Sept., Seite 3230-3
1. Verfasser: Seppala (VerfasserIn)
Weitere Verfasser: Alava, Duxbury
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM110042816
003 DE-627
005 20250202085631.0
007 tu
008 231222s2000 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0367.xml 
035 |a (DE-627)NLM110042816 
035 |a (NLM)11088818 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Seppala  |e verfasserin  |4 aut 
245 1 0 |a Periodic elastic medium in which periodicity is relevant 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We analyze, in both (1+1) and (2+1) dimensions, a periodic elastic medium in which the periodicity is such that at long distances the behavior is always in the random-substrate universality class. This contrasts with the models with an additive periodic potential in which, according to the field-theoretic analysis of Bouchaud and Georges and more recently of Emig and Nattermann, the random manifold class dominates at long distances in (1+1) and (2+1) dimensions. The models we use are random-bond Ising interfaces in hypercubic lattices. The exchange constants are random in a slab of size L(d-1)xlambda and these coupling constants are periodically repeated, with a period lambda, along either 10 or 11 [in (1+1) dimensions] and 100 or 111 [in (2+1) dimensions]. Exact ground-state calculations confirm scaling arguments which predict that the surface roughness w behaves as w approximately L(2/3), L<<L(c) and w approximately L(1/2),L>>L(c) with L(c) approximately lambda(3/2) in (1+1) dimensions, and w approximately L0.42,L<<L(c) and w approximately ln(L),L>>L(c) with L(c) approximately lambda(2. 38) in (2+1) dimensions 
650 4 |a Journal Article 
700 1 |a Alava  |e verfasserin  |4 aut 
700 1 |a Duxbury  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 62(2000), 3 Pt A vom: 27. Sept., Seite 3230-3  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:62  |g year:2000  |g number:3 Pt A  |g day:27  |g month:09  |g pages:3230-3 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 62  |j 2000  |e 3 Pt A  |b 27  |c 09  |h 3230-3