Dynamical entropy for systems with stochastic perturbation

Dynamics of deterministic systems perturbed by random additive noise is characterized quantitatively. Since for such systems the Kolmogorov-Sinai (KS) entropy diverges if the diameter of the partition tends to zero, we analyze the difference between the total entropy of a noisy system and the entrop...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 62(2000), 2 Pt A vom: 27. Aug., Seite 2018-29
1. Verfasser: Ostruszka (VerfasserIn)
Weitere Verfasser: Pakonski, Slomczynski, Zyczkowski
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM110041305
003 DE-627
005 20250202085622.0
007 tu
008 231222s2000 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0367.xml 
035 |a (DE-627)NLM110041305 
035 |a (NLM)11088667 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ostruszka  |e verfasserin  |4 aut 
245 1 0 |a Dynamical entropy for systems with stochastic perturbation 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Dynamics of deterministic systems perturbed by random additive noise is characterized quantitatively. Since for such systems the Kolmogorov-Sinai (KS) entropy diverges if the diameter of the partition tends to zero, we analyze the difference between the total entropy of a noisy system and the entropy of the noise itself. We show that this quantity is finite and non-negative and we call it the dynamical entropy of the noisy system. In the weak noise limit this quantity is conjectured to tend to the KS entropy of the deterministic system. In particular, we consider one-dimensional systems with noise described by a finite-dimensional kernel for which the Frobenius-Perron operator can be represented by a finite matrix 
650 4 |a Journal Article 
700 1 |a Pakonski  |e verfasserin  |4 aut 
700 1 |a Slomczynski  |e verfasserin  |4 aut 
700 1 |a Zyczkowski  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 62(2000), 2 Pt A vom: 27. Aug., Seite 2018-29  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:62  |g year:2000  |g number:2 Pt A  |g day:27  |g month:08  |g pages:2018-29 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 62  |j 2000  |e 2 Pt A  |b 27  |c 08  |h 2018-29