|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM110040937 |
003 |
DE-627 |
005 |
20250202085620.0 |
007 |
tu |
008 |
231222s2000 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0367.xml
|
035 |
|
|
|a (DE-627)NLM110040937
|
035 |
|
|
|a (NLM)11088630
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Raible
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Amorphous thin film growth
|b minimal deposition equation
|
264 |
|
1 |
|c 2000
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a A nonlinear stochastic growth equation is derived from (i) the symmetry principles relevant for the growth of vapor deposited amorphous films, (ii) no excess velocity, and (iii) a low-order expansion in the gradients of the surface profile. A growth instability in the equation is attributed to the deflection of the initially perpendicular incident particles due to attractive forces between the surface atoms and the incident particles. The stationary solutions of the deterministic limit of the equation and their stability are analyzed. The growth of the surface roughness and the correlation length of the moundlike surface structure arising from the stochastic growth equation is investigated
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Linz
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Hanggi
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
|d 1993
|g 62(2000), 2 Pt A vom: 27. Aug., Seite 1691-705
|w (DE-627)NLM098226002
|x 1063-651X
|7 nnns
|
773 |
1 |
8 |
|g volume:62
|g year:2000
|g number:2 Pt A
|g day:27
|g month:08
|g pages:1691-705
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 62
|j 2000
|e 2 Pt A
|b 27
|c 08
|h 1691-705
|