Probability distribution of the free energy of a directed polymer in a random medium

We calculate exactly the first cumulants of the free energy of a directed polymer in a random medium for the geometry of a cylinder. By using the fact that the nth moment <Z(n)> of the partition function is given by the ground-state energy of a quantum problem of n interacting particles on a r...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 61(2000), 6 Pt B vom: 27. Juni, Seite 6789-801
1. Verfasser: Brunet, E (VerfasserIn)
Weitere Verfasser: Derrida, B
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM110038371
003 DE-627
005 20250202085603.0
007 tu
008 231222s2000 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0367.xml 
035 |a (DE-627)NLM110038371 
035 |a (NLM)11088374 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Brunet, E  |e verfasserin  |4 aut 
245 1 0 |a Probability distribution of the free energy of a directed polymer in a random medium 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 22.12.2000 
500 |a Date Revised 28.07.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We calculate exactly the first cumulants of the free energy of a directed polymer in a random medium for the geometry of a cylinder. By using the fact that the nth moment <Z(n)> of the partition function is given by the ground-state energy of a quantum problem of n interacting particles on a ring of length L, we write an integral equation allowing to expand these moments in powers of the strength of the disorder gamma or in powers of n. For n small and n approximately (Lgamma)(-1/2), the moments <Z(n)> take a scaling form which allows us to describe all the fluctuations of order 1/L of the free energy per unit length of the directed polymer. The distribution of these fluctuations is the same as the one found recently in the asymmetric exclusion process, indicating that it is characteristic of all the systems described by the Kardar-Parisi-Zhang equation in 1+1 dimensions 
650 4 |a Journal Article 
700 1 |a Derrida, B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 61(2000), 6 Pt B vom: 27. Juni, Seite 6789-801  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:61  |g year:2000  |g number:6 Pt B  |g day:27  |g month:06  |g pages:6789-801 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 61  |j 2000  |e 6 Pt B  |b 27  |c 06  |h 6789-801