Universal algebraic relaxation of velocity and phase in pulled fronts generating periodic or chaotic states

We investigate the asymptotic relaxation of so-called pulled fronts propagating into an unstable state, and generalize the universal algebraic velocity relaxation of uniformly translating fronts to fronts that generate periodic or even chaotic states. A surprising feature is that such fronts also ex...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 61(2000), 6 Pt A vom: 27. Juni, Seite R6063-6
1. Verfasser: Storm (VerfasserIn)
Weitere Verfasser: Spruijt, Ebert, van Saarloos W
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:We investigate the asymptotic relaxation of so-called pulled fronts propagating into an unstable state, and generalize the universal algebraic velocity relaxation of uniformly translating fronts to fronts that generate periodic or even chaotic states. A surprising feature is that such fronts also exhibit a universal algebraic phase relaxation. For fronts that generate a periodic state, like those in the Swift-Hohenberg equation or in a Rayleigh-Benard experiment, this implies an algebraically slow relaxation of the pattern wavelength just behind the front, which should be experimentally testable
Beschreibung:Date Revised 20.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1063-651X