Universal algebraic relaxation of velocity and phase in pulled fronts generating periodic or chaotic states
We investigate the asymptotic relaxation of so-called pulled fronts propagating into an unstable state, and generalize the universal algebraic velocity relaxation of uniformly translating fronts to fronts that generate periodic or even chaotic states. A surprising feature is that such fronts also ex...
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 61(2000), 6 Pt A vom: 27. Juni, Seite R6063-6 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2000
|
Zugriff auf das übergeordnete Werk: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics |
Schlagworte: | Journal Article |
Zusammenfassung: | We investigate the asymptotic relaxation of so-called pulled fronts propagating into an unstable state, and generalize the universal algebraic velocity relaxation of uniformly translating fronts to fronts that generate periodic or even chaotic states. A surprising feature is that such fronts also exhibit a universal algebraic phase relaxation. For fronts that generate a periodic state, like those in the Swift-Hohenberg equation or in a Rayleigh-Benard experiment, this implies an algebraically slow relaxation of the pattern wavelength just behind the front, which should be experimentally testable |
---|---|
Beschreibung: | Date Revised 20.11.2019 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1063-651X |