|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM110037618 |
003 |
DE-627 |
005 |
20250202085558.0 |
007 |
tu |
008 |
231222s2000 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0367.xml
|
035 |
|
|
|a (DE-627)NLM110037618
|
035 |
|
|
|a (NLM)11088298
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Curado
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Thermodynamic properties of a solid exhibiting the energy spectrum given by the logistic map
|
264 |
|
1 |
|c 2000
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Revised 20.11.2019
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a We show that the infinite-dimensional representation of the recently introduced logistic algebra can be interpreted as a nontrivial generalization of the Heisenberg or oscillator algebra. This allows us to construct a quantum Hamiltonian having the energy spectrum given by the logistic map. We analyze the Hamiltonian of a solid whose collective modes of vibration are described by this generalized oscillator and compute the thermodynamic properties of the model in the two-cycle and r=3.6785 chaotic region of the logistic map
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Rego-Monteiro
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
|d 1993
|g 61(2000), 6 Pt A vom: 27. Juni, Seite 6255-60
|w (DE-627)NLM098226002
|x 1063-651X
|7 nnns
|
773 |
1 |
8 |
|g volume:61
|g year:2000
|g number:6 Pt A
|g day:27
|g month:06
|g pages:6255-60
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 61
|j 2000
|e 6 Pt A
|b 27
|c 06
|h 6255-60
|