Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma
The time profile of the fluorescence light emission of atomic hydrogen in an expanding plasma beam after pulsed excitation with a nanosecond laser is studied, both experimentally and computationally. Ground state H atoms in an expanding Ar-H cascaded arc plasma are excited to the p=3 level using two...
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 61(2000), 4 Pt B vom: 27. Apr., Seite 4402-9 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2000
|
Zugriff auf das übergeordnete Werk: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics |
Schlagworte: | Journal Article |
Zusammenfassung: | The time profile of the fluorescence light emission of atomic hydrogen in an expanding plasma beam after pulsed excitation with a nanosecond laser is studied, both experimentally and computationally. Ground state H atoms in an expanding Ar-H cascaded arc plasma are excited to the p=3 level using two-photon laser excitation at 205 nm. The resulting fluorescence is resolved in time with a fast photomultiplier tube to investigate the occurrence of quenching. A fluorescence decay time of (10+/-0.5) ns is measured under all circumstances, indicating that there is a complete l mixing of the p=3 sublevels. A time-resolved collisional radiative model is developed to model pulsed laser induced fluorescence for a large range of plasma parameters. The model calculations agree well with the experimental results over the entire range of conditions and indicate that two-photon LIF can strongly influence the local electron and ion densities, resulting in a "self-quenching" of the laser-induced H fluorescence |
---|---|
Beschreibung: | Date Revised 20.11.2019 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1063-651X |