Time-resolved experimental and computational study of two-photon laser-induced fluorescence in a hydrogen plasma

The time profile of the fluorescence light emission of atomic hydrogen in an expanding plasma beam after pulsed excitation with a nanosecond laser is studied, both experimentally and computationally. Ground state H atoms in an expanding Ar-H cascaded arc plasma are excited to the p=3 level using two...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 61(2000), 4 Pt B vom: 27. Apr., Seite 4402-9
1. Verfasser: van Der Heijden HW (VerfasserIn)
Weitere Verfasser: Boogaarts, Mazouffre, van Der Mullen JA, Schram
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The time profile of the fluorescence light emission of atomic hydrogen in an expanding plasma beam after pulsed excitation with a nanosecond laser is studied, both experimentally and computationally. Ground state H atoms in an expanding Ar-H cascaded arc plasma are excited to the p=3 level using two-photon laser excitation at 205 nm. The resulting fluorescence is resolved in time with a fast photomultiplier tube to investigate the occurrence of quenching. A fluorescence decay time of (10+/-0.5) ns is measured under all circumstances, indicating that there is a complete l mixing of the p=3 sublevels. A time-resolved collisional radiative model is developed to model pulsed laser induced fluorescence for a large range of plasma parameters. The model calculations agree well with the experimental results over the entire range of conditions and indicate that two-photon LIF can strongly influence the local electron and ion densities, resulting in a "self-quenching" of the laser-induced H fluorescence
Beschreibung:Date Revised 20.11.2019
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1063-651X