Perturbation expansion in phase-ordering kinetics. II. N-vector model

The perturbation theory expansion presented earlier to describe the phase-ordering kinetics in the case of a nonconserved scalar order parameter is generalized to the case of the n-vector model. At lowest order in this expansion, as in the scalar case, one obtains the theory due to Ohta, Jasnow, and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 61(2000), 2 vom: 01. Feb., Seite 1088-101
1. Verfasser: Mazenko (VerfasserIn)
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM109651979
003 DE-627
005 20250202075647.0
007 tu
008 231222s2000 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0366.xml 
035 |a (DE-627)NLM109651979 
035 |a (NLM)11046378 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mazenko  |e verfasserin  |4 aut 
245 1 0 |a Perturbation expansion in phase-ordering kinetics. II. N-vector model 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The perturbation theory expansion presented earlier to describe the phase-ordering kinetics in the case of a nonconserved scalar order parameter is generalized to the case of the n-vector model. At lowest order in this expansion, as in the scalar case, one obtains the theory due to Ohta, Jasnow, and Kawasaki (OJK). The second-order corrections for the nonequilibrium exponents are worked out explicitly in d dimensions and as a function of the number of components n of the order parameter. In the formulation developed here the corrections to the OJK results are found to go to zero in the large n and d limits. Indeed, the large-d convergence is exponential 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 61(2000), 2 vom: 01. Feb., Seite 1088-101  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:61  |g year:2000  |g number:2  |g day:01  |g month:02  |g pages:1088-101 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 61  |j 2000  |e 2  |b 01  |c 02  |h 1088-101