Drift ratchet
We consider a silicon wafer, pierced by millions of identical pores with periodically varying diameters but without spatial inversion symmetry (ratchet profile). When a liquid is periodically pumped back and forth through the pores, our theory predicts a net transport of suspended micrometer-sized p...
Veröffentlicht in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 61(2000), 1 vom: 01. Jan., Seite 312-23 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2000
|
Zugriff auf das übergeordnete Werk: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics |
Schlagworte: | Journal Article |
Zusammenfassung: | We consider a silicon wafer, pierced by millions of identical pores with periodically varying diameters but without spatial inversion symmetry (ratchet profile). When a liquid is periodically pumped back and forth through the pores, our theory predicts a net transport of suspended micrometer-sized particles (drift ratchet). The direction of this particle current depends very sensitively on the size of the particles. For typical parameter values of the experiment, two different types of particles at an initially homogeneous 1:1 mixture are spatially separated with a purity beyond 1:1000 on a time scale of a few hours in comparably large quantities. This result is due to the highly parallel architecture of the device. The experimental realization of the setup, presently under construction, thus appears to be a promising new particle separation device, possibly superior to existing methods for particles sizes on the micrometer scale |
---|---|
Beschreibung: | Date Revised 20.11.2019 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1063-651X |