Scaling of waves in the bak-tang-wiesenfeld sandpile model

We study probability distributions of waves of topplings in the Bak-Tang-Wiesenfeld model on hypercubic lattices for dimensions D>/=2. Waves represent relaxation processes which do not contain multiple toppling events. We investigate bulk and boundary waves by means of their correspondence to spa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics. - 1993. - 61(2000), 1 vom: 01. Jan., Seite 81-92
1. Verfasser: Ktitarev (VerfasserIn)
Weitere Verfasser: Lubeck, Grassberger, B Priezzhev V
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM10965062X
003 DE-627
005 20250202075637.0
007 tu
008 231222s2000 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0366.xml 
035 |a (DE-627)NLM10965062X 
035 |a (NLM)11046243 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ktitarev  |e verfasserin  |4 aut 
245 1 0 |a Scaling of waves in the bak-tang-wiesenfeld sandpile model 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We study probability distributions of waves of topplings in the Bak-Tang-Wiesenfeld model on hypercubic lattices for dimensions D>/=2. Waves represent relaxation processes which do not contain multiple toppling events. We investigate bulk and boundary waves by means of their correspondence to spanning trees, and by extensive numerical simulations. While the scaling behavior of avalanches is complex and usually not governed by simple scaling laws, we show that the probability distributions for waves display clear power-law asymptotic behavior in perfect agreement with the analytical predictions. Critical exponents are obtained for the distributions of radius, area, and duration of bulk and boundary waves. Relations between them and fractal dimensions of waves are derived. We confirm that the upper critical dimension D(u) of the model is 4, and calculate logarithmic corrections to the scaling behavior of waves in D=4. In addition, we present analytical estimates for bulk avalanches in dimensions D>/=4 and simulation data for avalanches in D</=3. For D=2 they seem not easy to interpret 
650 4 |a Journal Article 
700 1 |a Lubeck  |e verfasserin  |4 aut 
700 1 |a Grassberger  |e verfasserin  |4 aut 
700 1 |a B Priezzhev V  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics  |d 1993  |g 61(2000), 1 vom: 01. Jan., Seite 81-92  |w (DE-627)NLM098226002  |x 1063-651X  |7 nnns 
773 1 8 |g volume:61  |g year:2000  |g number:1  |g day:01  |g month:01  |g pages:81-92 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 61  |j 2000  |e 1  |b 01  |c 01  |h 81-92