Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia

To investigate regulation of anaerobic carbohydrate catabolism in anoxia-tolerant plant tissue, rate of alcoholic fermentation and maximum catalytic activities of four key enzymes were assessed in coleoptiles of two rice cultivars that differ in tolerance to anoxia. The enzymes were ATP-dependent ph...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 51(2000), 345 vom: 01. Apr., Seite 785-96
1. Verfasser: Gibbs, J (VerfasserIn)
Weitere Verfasser: Morrell, S, Valdez, A, Setter, T L, Greenway, H
Format: Aufsatz
Sprache:English
Veröffentlicht: 2000
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Comparative Study Journal Article Ethanol 3K9958V90M Alcohol Dehydrogenase EC 1.1.1.1 Phosphotransferases EC 2.7.- Phosphofructokinase-1 EC 2.7.1.11 mehr... pyrophosphate-fructose 6-phosphate 1-phosphotransferase EC 2.7.1.90 Pyruvate Decarboxylase EC 4.1.1.1 Oxygen S88TT14065
LEADER 01000naa a22002652 4500
001 NLM108615359
003 DE-627
005 20231222145547.0
007 tu
008 231222s2000 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0362.xml 
035 |a (DE-627)NLM108615359 
035 |a (NLM)10938871 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gibbs, J  |e verfasserin  |4 aut 
245 1 0 |a Regulation of alcoholic fermentation in coleoptiles of two rice cultivars differing in tolerance to anoxia 
264 1 |c 2000 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 01.09.2000 
500 |a Date Revised 19.11.2015 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a To investigate regulation of anaerobic carbohydrate catabolism in anoxia-tolerant plant tissue, rate of alcoholic fermentation and maximum catalytic activities of four key enzymes were assessed in coleoptiles of two rice cultivars that differ in tolerance to anoxia. The enzymes were ATP-dependent phosphofructokinase (PFK), pyrophosphate-dependent phosphofructokinase (PFP), pyruvate decarboxylase (PDC), and alcohol dehydrogenase (ADH). During anoxia, rates of coleoptile elongation and ethanol synthesis were faster in the more tolerant variety Calrose than in IR22. Calrose coleoptiles, in contrast to IR22, also showed a sustained Pasteur effect, with the estimated rate of glycolysis during anoxia being 1.4-1.7-fold faster than that of aerobic coleoptiles. In Calrose after 5 d anoxia, maximum catalytic activities of crude enzyme extracts were (in mumol substrate g-1 fresh weight min.-1) 170-240 for ADH, 4-6 for PDC and PFP and 0.4-0.7 for PFK. During anoxia, activity per coleoptile of all four enzymes increased 3-5.5-fold, suggesting that PFK, and PFP, like PDC and ADH, are synthesised in anoxic rice coleoptiles. Enzyme activities, on a fresh weight basis, were lower in IR22 than in Calrose. In vivo activities of PDC and PFK in anoxic coleoptiles from both cultivars were calculated using in vitro activities, estimated substrate levels, cytoplasmic pH, and S0.5 (the substrate level at which 0.5Vmax is reached, without inferring Michaelis-Menten kinetics). Data indicated that potential carbon flux through PFK, rather than through PDC, more closely approximated rates of alcoholic fermentation. That PFK is an important site of regulation was supported further for Calrose coleoptiles by a decrease in the concentration of its substrate pool (F-6-P + G-6-P) following the onset of anoxia. By contrast, in IR22, there was little evidence for control by PFK, consistent with recent evidence that suggests substrate supply limits alcoholic fermentation in this cultivar 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 7 |a Ethanol  |2 NLM 
650 7 |a 3K9958V90M  |2 NLM 
650 7 |a Alcohol Dehydrogenase  |2 NLM 
650 7 |a EC 1.1.1.1  |2 NLM 
650 7 |a Phosphotransferases  |2 NLM 
650 7 |a EC 2.7.-  |2 NLM 
650 7 |a Phosphofructokinase-1  |2 NLM 
650 7 |a EC 2.7.1.11  |2 NLM 
650 7 |a pyrophosphate-fructose 6-phosphate 1-phosphotransferase  |2 NLM 
650 7 |a EC 2.7.1.90  |2 NLM 
650 7 |a Pyruvate Decarboxylase  |2 NLM 
650 7 |a EC 4.1.1.1  |2 NLM 
650 7 |a Oxygen  |2 NLM 
650 7 |a S88TT14065  |2 NLM 
700 1 |a Morrell, S  |e verfasserin  |4 aut 
700 1 |a Valdez, A  |e verfasserin  |4 aut 
700 1 |a Setter, T L  |e verfasserin  |4 aut 
700 1 |a Greenway, H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 51(2000), 345 vom: 01. Apr., Seite 785-96  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:51  |g year:2000  |g number:345  |g day:01  |g month:04  |g pages:785-96 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 51  |j 2000  |e 345  |b 01  |c 04  |h 785-96