Rapid effects of nitrogen form on leaf morphogenesis in tobacco
Ammonium (NH4+) instead of nitrate (NO3-) as the nitrogen (N) source for tobacco (Nicotiana tabacum L.) cultivated in a pH-buffered nutrient solution resulted in decreased shoot and root biomass. Reduction of shoot fresh weight was mainly related to inhibition of leaf growth, which was already detec...
Veröffentlicht in: | Journal of experimental botany. - 1985. - 51(2000), 343 vom: 28. Feb., Seite 227-37 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2000
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Minerals Nitrogen N762921K75 |
Zusammenfassung: | Ammonium (NH4+) instead of nitrate (NO3-) as the nitrogen (N) source for tobacco (Nicotiana tabacum L.) cultivated in a pH-buffered nutrient solution resulted in decreased shoot and root biomass. Reduction of shoot fresh weight was mainly related to inhibition of leaf growth, which was already detectable after short-term NH4+ treatments of 24 h, and even at a moderate concentration level of 2 mM. Microscopic analysis of the epidermis of fully expanded leaves revealed a decrease in cell number (50%) and in cell size (30%) indicating that both cell division and cell elongation were affected by NH4+ application. Changes in various physiological parameters known to be associated with NH4(+)-induced growth depression were examined both in long-term and short-term experiments: the concentrations of total N, soluble sugars and starch as well as the osmotic potential, the apparent hydraulic conductivity and the rate of water uptake were not reduced by NH4+ treatments (duration 1-12 d), suggesting that leaf growth was neither limited by the availability of N and carbohydrates, nor by a lack of osmotica or water supply. Although the concentration of K+ in leaf press sap declined in expanding leaves by approximately 15% in response to NH4+ nutrition, limitation of mineral nutrients seems to be unlikely in view of the fast response of leaf growth at 24 h after the start of the NH4+ treatment. No inhibitory effects were observed when NH4+ and NO3- were applied simultaneously (each 1 mM) resulting in a NO3-/NH4+ net uptake ratio of 6:4. These findings suggest that the rapid inhibition of leaf growth was not primarily related to NH4+ toxicity, but to the lack of NO3(-)-supply. Growth inhibition of plants fed solely with NH4+ was associated with a 60% reduction of the zeatine + zeatine riboside (Z + ZR) cytokinin fraction in the xylem sap after 24 h. Furthermore Z + ZR levels declined to almost zero within the next 4 d after start of the NH4+ treatment. In contrast, the concentrations of the putative Z + ZR precursors isopentenyl-adenine and isopentenyl-adenosine (i-Ade + i-Ado) were not affected by NH4+ application. Since cytokinins are involved in the regulation of both cell division and cell elongation, it seems likely that the presence of NO3- is required to maintain biosynthesis and/or root to shoot transfer of cytokinins at a level that is sufficient to mediate normal leaf morphogenesis |
---|---|
Beschreibung: | Date Completed 25.08.2000 Date Revised 13.12.2023 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |