Analysis of biomedical text for chemical names : a comparison of three methods

At the National Library of Medicine (NLM), a variety of biomedical vocabularies are found in data pertinent to its mission. In addition to standard medical terminology, there are specialized vocabularies including that of chemical nomenclature. Normal language tools including the lexically based one...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Proceedings. AMIA Symposium. - 1998. - (1999) vom: 23., Seite 176-80
1. Verfasser: Wilbur, W J (VerfasserIn)
Weitere Verfasser: Hazard, G F Jr, Divita, G, Mork, J G, Aronson, A R, Browne, A C
Format: Aufsatz
Sprache:English
Veröffentlicht: 1999
Zugriff auf das übergeordnete Werk:Proceedings. AMIA Symposium
Schlagworte:Comparative Study Journal Article Inorganic Chemicals Organic Chemicals
LEADER 01000naa a22002652 4500
001 NLM104963360
003 DE-627
005 20231222133638.0
007 tu
008 231222s1999 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0350.xml 
035 |a (DE-627)NLM104963360 
035 |a (NLM)10566344 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wilbur, W J  |e verfasserin  |4 aut 
245 1 0 |a Analysis of biomedical text for chemical names  |b a comparison of three methods 
264 1 |c 1999 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 01.02.2000 
500 |a Date Revised 21.10.2016 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a At the National Library of Medicine (NLM), a variety of biomedical vocabularies are found in data pertinent to its mission. In addition to standard medical terminology, there are specialized vocabularies including that of chemical nomenclature. Normal language tools including the lexically based ones used by the Unified Medical Language System (UMLS) to manipulate and normalize text do not work well on chemical nomenclature. In order to improve NLM's capabilities in chemical text processing, two approaches to the problem of recognizing chemical nomenclature were explored. The first approach was a lexical one and consisted of analyzing text for the presence of a fixed set of chemical segments. The approach was extended with general chemical patterns and also with terms from NLM's indexing vocabulary, MeSH, and the NLM SPECIALIST lexicon. The second approach applied Bayesian classification to n-grams of text via two different methods. The single lexical method and two statistical methods were tested against data from the 1999 UMLS Metathesaurus. One of the statistical methods had an overall classification accuracy of 97% 
650 4 |a Comparative Study 
650 4 |a Journal Article 
650 7 |a Inorganic Chemicals  |2 NLM 
650 7 |a Organic Chemicals  |2 NLM 
700 1 |a Hazard, G F  |c Jr  |e verfasserin  |4 aut 
700 1 |a Divita, G  |e verfasserin  |4 aut 
700 1 |a Mork, J G  |e verfasserin  |4 aut 
700 1 |a Aronson, A R  |e verfasserin  |4 aut 
700 1 |a Browne, A C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Proceedings. AMIA Symposium  |d 1998  |g (1999) vom: 23., Seite 176-80  |w (DE-627)NLM098642928  |x 1531-605X  |7 nnns 
773 1 8 |g year:1999  |g day:23  |g pages:176-80 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 1999  |b 23  |h 176-80