Small Area Quantile Estimation

Sample surveys are widely used to obtain information about totals, means, medians and other parameters of finite populations. In many applications, similar information is desired for subpopulations such as individuals in specific geographic areas and socio-demographic groups. When the surveys are co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:International Statistical Review / Revue Internationale de Statistique. - Wiley. - 87(2019) vom: Mai, Seite S219-S238
1. Verfasser: Chen, Jiahua (VerfasserIn)
Weitere Verfasser: Liu, Yukun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:International Statistical Review / Revue Internationale de Statistique
LEADER 01000naa a22002652 4500
001 JST141866519
003 DE-627
005 20250107183418.0
007 cr uuu---uuuuu
008 250107s2019 xx |||||o 00| ||eng c
035 |a (DE-627)JST141866519 
035 |a (JST)48554445 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Jiahua  |e verfasserin  |4 aut 
245 1 0 |a Small Area Quantile Estimation 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Sample surveys are widely used to obtain information about totals, means, medians and other parameters of finite populations. In many applications, similar information is desired for subpopulations such as individuals in specific geographic areas and socio-demographic groups. When the surveys are conducted at national or similarly high levels, a probability sampling can result in just a few sampling units from many unplanned subpopulations at the design stage. Cost considerations may also lead to low sample sizes from individual small areas. Estimating the parameters of these subpopulations with satisfactory precision and evaluating their accuracy are serious challenges for statisticians. To overcome the difficulties, statisticians resort to pooling information across the small areas via suitable model assumptions, administrative archives and census data. In this paper, we develop an array of small area quantile estimators. The novelty is the introduction of a semiparametric density ratio model for the error distribution in the unit-level nested error regression model. In contrast, the existing methods are usually most effective when the response values are jointly normal. We also propose a resampling procedure for estimating the mean square errors of these estimators. Simulation results indicate that the new methods have superior performance when the population distributions are skewed and remain competitive otherwise. 
540 |a © 2018 The Authors 
655 4 |a research-article 
700 1 |a Liu, Yukun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t International Statistical Review / Revue Internationale de Statistique  |d Wiley  |g 87(2019) vom: Mai, Seite S219-S238  |w (DE-627)327815280  |w (DE-600)2045049-7  |x 17515823  |7 nnns 
773 1 8 |g volume:87  |g year:2019  |g month:05  |g pages:S219-S238 
856 4 0 |u https://www.jstor.org/stable/48554445  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_26 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_206 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2938 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4027 
912 |a GBV_ILN_4028 
912 |a GBV_ILN_4029 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4116 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4155 
912 |a GBV_ILN_4219 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4266 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4310 
912 |a GBV_ILN_4311 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4314 
912 |a GBV_ILN_4315 
912 |a GBV_ILN_4316 
912 |a GBV_ILN_4317 
912 |a GBV_ILN_4318 
912 |a GBV_ILN_4319 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4328 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4392 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4598 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 87  |j 2019  |c 05  |h S219-S238