Small Area Quantile Estimation

Sample surveys are widely used to obtain information about totals, means, medians and other parameters of finite populations. In many applications, similar information is desired for subpopulations such as individuals in specific geographic areas and socio-demographic groups. When the surveys are co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:International Statistical Review / Revue Internationale de Statistique. - Wiley. - 87(2019) vom: Mai, Seite S219-S238
1. Verfasser: Chen, Jiahua (VerfasserIn)
Weitere Verfasser: Liu, Yukun
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:International Statistical Review / Revue Internationale de Statistique
LEADER 01000naa a22002652 4500
001 JST141866519
003 DE-627
005 20250107183418.0
007 cr uuu---uuuuu
008 250107s2019 xx |||||o 00| ||eng c
035 |a (DE-627)JST141866519 
035 |a (JST)48554445 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chen, Jiahua  |e verfasserin  |4 aut 
245 1 0 |a Small Area Quantile Estimation 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Sample surveys are widely used to obtain information about totals, means, medians and other parameters of finite populations. In many applications, similar information is desired for subpopulations such as individuals in specific geographic areas and socio-demographic groups. When the surveys are conducted at national or similarly high levels, a probability sampling can result in just a few sampling units from many unplanned subpopulations at the design stage. Cost considerations may also lead to low sample sizes from individual small areas. Estimating the parameters of these subpopulations with satisfactory precision and evaluating their accuracy are serious challenges for statisticians. To overcome the difficulties, statisticians resort to pooling information across the small areas via suitable model assumptions, administrative archives and census data. In this paper, we develop an array of small area quantile estimators. The novelty is the introduction of a semiparametric density ratio model for the error distribution in the unit-level nested error regression model. In contrast, the existing methods are usually most effective when the response values are jointly normal. We also propose a resampling procedure for estimating the mean square errors of these estimators. Simulation results indicate that the new methods have superior performance when the population distributions are skewed and remain competitive otherwise. 
540 |a © 2018 The Authors 
655 4 |a research-article 
700 1 |a Liu, Yukun  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t International Statistical Review / Revue Internationale de Statistique  |d Wiley  |g 87(2019) vom: Mai, Seite S219-S238  |w (DE-627)JST041653211  |x 17515823  |7 nnns 
773 1 8 |g volume:87  |g year:2019  |g month:05  |g pages:S219-S238 
856 4 0 |u https://www.jstor.org/stable/48554445  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_32 
912 |a GBV_ILN_62 
912 |a GBV_ILN_70 
912 |a GBV_ILN_90 
912 |a GBV_ILN_104 
912 |a GBV_ILN_110 
912 |a GBV_ILN_131 
912 |a GBV_ILN_203 
912 |a GBV_ILN_285 
912 |a GBV_ILN_350 
912 |a GBV_ILN_355 
912 |a GBV_ILN_674 
951 |a AR 
952 |d 87  |j 2019  |c 05  |h S219-S238