|
|
|
|
| LEADER |
01000caa a22002652c 4500 |
| 001 |
JST140205136 |
| 003 |
DE-627 |
| 005 |
20240626021540.0 |
| 007 |
cr uuu---uuuuu |
| 008 |
240126s2018 xx |||||o 00| ||eng c |
| 035 |
|
|
|a (DE-627)JST140205136
|
| 035 |
|
|
|a (JST)26384251
|
| 040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
| 041 |
|
|
|a eng
|
| 100 |
1 |
|
|a Waite, Timothy W.
|e verfasserin
|4 aut
|
| 245 |
1 |
0 |
|a SINGULAR PRIOR DISTRIBUTIONS AND ILL-CONDITIONING IN BAYESIAN D-OPTIMAL DESIGN FOR SEVERAL NONLINEAR MODELS
|
| 264 |
|
1 |
|c 2018
|
| 336 |
|
|
|a Text
|b txt
|2 rdacontent
|
| 337 |
|
|
|a Computermedien
|b c
|2 rdamedia
|
| 338 |
|
|
|a Online-Ressource
|b cr
|2 rdacarrier
|
| 520 |
|
|
|a For Bayesian D-optimal design, we define a singular prior distribution for the model parameters as a prior distribution such that the determinant of the Fisher information matrix has a prior geometric mean of zero for all designs. For such a prior distribution, the Bayesian D-optimality criterion fails to select a design. For the exponential decay model, we characterize singularity of the prior distribution in terms of the expectations of a few elementary transformations of the parameter. For a compartmental model and several multi-parameter generalized linear models, we establish sufficient conditions for singularity of a prior distribution. For the generalized linear models we also obtain sufficient conditions for non-singularity. In the existing literature, weakly informative prior distributions are commonly recommended as a default choice for inference in logistic regression. Here it is shown that some of the recommended prior distributions are singular, and hence should not be used for Bayesian D-optimal design. Additionally, methods are developed to derive and assess Bayesian D-efficient designs when numerical evaluation of the objective function fails due to ill-conditioning, as often occurs for heavy-tailed prior distributions. These numerical methods are illustrated for logistic regression.
|
| 540 |
|
|
|a © 2018 STATISTICA SINICA
|
| 650 |
|
4 |
|a Philosophy
|x Applied philosophy
|x Philosophy of science
|x Scientific method
|x Experimentation
|x Experiment design
|
| 650 |
|
4 |
|a Information science
|x Information analysis
|x Data analysis
|x Regression analysis
|x Logistic regression
|
| 650 |
|
4 |
|a Arts
|x Applied arts
|x Design
|x Design engineering
|x Design efficiency
|
| 650 |
|
4 |
|a Information science
|x Information analysis
|x Data analysis
|x Regression analysis
|x Linear regression
|x Linear models
|x Generalized linear model
|
| 650 |
|
4 |
|a Philosophy
|x Applied philosophy
|x Philosophy of science
|x Scientific method
|x Experimentation
|x Experiment design
|x Factorial design
|
| 650 |
|
4 |
|a Applied sciences
|x Computer science
|x Computer programming
|x Mathematical programming
|x Nonlinear programming
|x Objective functions
|
| 650 |
|
4 |
|a Information science
|x Information analysis
|x Data analysis
|x Regression analysis
|
| 650 |
|
4 |
|a Physical sciences
|x Physics
|x Mathematical physics
|x Numerical quadratures
|
| 650 |
|
4 |
|a Mathematics
|x Mathematical procedures
|x Approximation
|
| 650 |
|
4 |
|a Mathematics
|x Pure mathematics
|x Linear algebra
|x Vector analysis
|x Mathematical vectors
|
| 655 |
|
4 |
|a research-article
|
| 773 |
0 |
8 |
|i Enthalten in
|t Statistica Sinica
|d Institute of Statistical Science, Academia Sinica, 1991
|g 28(2018), 1, Seite 505-525
|w (DE-627)325573409
|w (DE-600)2037676-5
|x 19968507
|7 nnas
|
| 773 |
1 |
8 |
|g volume:28
|g year:2018
|g number:1
|g pages:505-525
|
| 856 |
4 |
0 |
|u https://www.jstor.org/stable/26384251
|3 Volltext
|
| 912 |
|
|
|a GBV_USEFLAG_A
|
| 912 |
|
|
|a SYSFLAG_A
|
| 912 |
|
|
|a GBV_JST
|
| 912 |
|
|
|a GBV_ILN_11
|
| 912 |
|
|
|a GBV_ILN_20
|
| 912 |
|
|
|a GBV_ILN_22
|
| 912 |
|
|
|a GBV_ILN_23
|
| 912 |
|
|
|a GBV_ILN_24
|
| 912 |
|
|
|a GBV_ILN_31
|
| 912 |
|
|
|a GBV_ILN_39
|
| 912 |
|
|
|a GBV_ILN_40
|
| 912 |
|
|
|a GBV_ILN_60
|
| 912 |
|
|
|a GBV_ILN_62
|
| 912 |
|
|
|a GBV_ILN_63
|
| 912 |
|
|
|a GBV_ILN_65
|
| 912 |
|
|
|a GBV_ILN_69
|
| 912 |
|
|
|a GBV_ILN_70
|
| 912 |
|
|
|a GBV_ILN_72
|
| 912 |
|
|
|a GBV_ILN_73
|
| 912 |
|
|
|a GBV_ILN_95
|
| 912 |
|
|
|a GBV_ILN_100
|
| 912 |
|
|
|a GBV_ILN_101
|
| 912 |
|
|
|a GBV_ILN_105
|
| 912 |
|
|
|a GBV_ILN_110
|
| 912 |
|
|
|a GBV_ILN_120
|
| 912 |
|
|
|a GBV_ILN_151
|
| 912 |
|
|
|a GBV_ILN_161
|
| 912 |
|
|
|a GBV_ILN_170
|
| 912 |
|
|
|a GBV_ILN_206
|
| 912 |
|
|
|a GBV_ILN_213
|
| 912 |
|
|
|a GBV_ILN_230
|
| 912 |
|
|
|a GBV_ILN_285
|
| 912 |
|
|
|a GBV_ILN_293
|
| 912 |
|
|
|a GBV_ILN_370
|
| 912 |
|
|
|a GBV_ILN_374
|
| 912 |
|
|
|a GBV_ILN_602
|
| 912 |
|
|
|a GBV_ILN_702
|
| 912 |
|
|
|a GBV_ILN_2001
|
| 912 |
|
|
|a GBV_ILN_2003
|
| 912 |
|
|
|a GBV_ILN_2005
|
| 912 |
|
|
|a GBV_ILN_2006
|
| 912 |
|
|
|a GBV_ILN_2007
|
| 912 |
|
|
|a GBV_ILN_2008
|
| 912 |
|
|
|a GBV_ILN_2009
|
| 912 |
|
|
|a GBV_ILN_2010
|
| 912 |
|
|
|a GBV_ILN_2011
|
| 912 |
|
|
|a GBV_ILN_2014
|
| 912 |
|
|
|a GBV_ILN_2015
|
| 912 |
|
|
|a GBV_ILN_2018
|
| 912 |
|
|
|a GBV_ILN_2020
|
| 912 |
|
|
|a GBV_ILN_2021
|
| 912 |
|
|
|a GBV_ILN_2026
|
| 912 |
|
|
|a GBV_ILN_2044
|
| 912 |
|
|
|a GBV_ILN_2050
|
| 912 |
|
|
|a GBV_ILN_2056
|
| 912 |
|
|
|a GBV_ILN_2088
|
| 912 |
|
|
|a GBV_ILN_2107
|
| 912 |
|
|
|a GBV_ILN_2110
|
| 912 |
|
|
|a GBV_ILN_2190
|
| 912 |
|
|
|a GBV_ILN_2949
|
| 912 |
|
|
|a GBV_ILN_2950
|
| 912 |
|
|
|a GBV_ILN_4012
|
| 912 |
|
|
|a GBV_ILN_4027
|
| 912 |
|
|
|a GBV_ILN_4028
|
| 912 |
|
|
|a GBV_ILN_4035
|
| 912 |
|
|
|a GBV_ILN_4037
|
| 912 |
|
|
|a GBV_ILN_4046
|
| 912 |
|
|
|a GBV_ILN_4112
|
| 912 |
|
|
|a GBV_ILN_4116
|
| 912 |
|
|
|a GBV_ILN_4125
|
| 912 |
|
|
|a GBV_ILN_4126
|
| 912 |
|
|
|a GBV_ILN_4155
|
| 912 |
|
|
|a GBV_ILN_4242
|
| 912 |
|
|
|a GBV_ILN_4249
|
| 912 |
|
|
|a GBV_ILN_4266
|
| 912 |
|
|
|a GBV_ILN_4305
|
| 912 |
|
|
|a GBV_ILN_4306
|
| 912 |
|
|
|a GBV_ILN_4307
|
| 912 |
|
|
|a GBV_ILN_4309
|
| 912 |
|
|
|a GBV_ILN_4310
|
| 912 |
|
|
|a GBV_ILN_4311
|
| 912 |
|
|
|a GBV_ILN_4313
|
| 912 |
|
|
|a GBV_ILN_4314
|
| 912 |
|
|
|a GBV_ILN_4315
|
| 912 |
|
|
|a GBV_ILN_4316
|
| 912 |
|
|
|a GBV_ILN_4317
|
| 912 |
|
|
|a GBV_ILN_4318
|
| 912 |
|
|
|a GBV_ILN_4319
|
| 912 |
|
|
|a GBV_ILN_4322
|
| 912 |
|
|
|a GBV_ILN_4323
|
| 912 |
|
|
|a GBV_ILN_4324
|
| 912 |
|
|
|a GBV_ILN_4325
|
| 912 |
|
|
|a GBV_ILN_4326
|
| 912 |
|
|
|a GBV_ILN_4335
|
| 912 |
|
|
|a GBV_ILN_4338
|
| 912 |
|
|
|a GBV_ILN_4346
|
| 912 |
|
|
|a GBV_ILN_4367
|
| 912 |
|
|
|a GBV_ILN_4393
|
| 912 |
|
|
|a GBV_ILN_4700
|
| 951 |
|
|
|a AR
|
| 952 |
|
|
|d 28
|j 2018
|e 1
|h 505-525
|