Ax–Lindemann and André–Oort for a Nonholomorphic Modular Function

Le cas modulaire de la Conjecture d’André–Oort est un théorème démontré par André et Pila, qui concerne la fonction modulaire bien connue j. Je décris deux autres classes « non classiques » de la fonction modulaire, à savoir les fonctions quasimodulaires (QM) et presque holomorphes modulaires (AHM)....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal de Théorie des Nombres de Bordeaux. - Société Arithmétique de Bordeaux, 1993. - 30(2018), 3, Seite 743-779
1. Verfasser: SPENCE, Haden (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal de Théorie des Nombres de Bordeaux
Schlagworte:Mathematics
LEADER 01000caa a22002652 4500
001 JST139624635
003 DE-627
005 20240626011428.0
007 cr uuu---uuuuu
008 240120s2018 xx |||||o 00| ||eng c
035 |a (DE-627)JST139624635 
035 |a (JST)26608345 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a SPENCE, Haden  |e verfasserin  |4 aut 
245 1 0 |a Ax–Lindemann and André–Oort for a Nonholomorphic Modular Function 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Le cas modulaire de la Conjecture d’André–Oort est un théorème démontré par André et Pila, qui concerne la fonction modulaire bien connue j. Je décris deux autres classes « non classiques » de la fonction modulaire, à savoir les fonctions quasimodulaires (QM) et presque holomorphes modulaires (AHM). Celles-ci sont peut-être moins connues que j, mais divers auteurs, y compris Masser, Shimura et Zagier, les ont étudiées. Il suffit de se concentrer sur une fonction QM précise χ et sa fonction AHM duale, χ* car celles-ci (avec j) engendrent les corps concernés. Après avoir discuté certaines des propriétés de ces fonctions, je montre par la suite quelques résultats de type Ax–Lindemann sur χ et χ*. Je les combine ensuite avec une méthode ordinaire de o-minimalité et de comptage de points pour démontrer le résultat central de l’article; une analogique naturelle de la conjecture d’André–Oort modulaire qui s’applique à la fonction χ*. The modular case of the André–Oort Conjecture is a theorem of André and Pila, having at its heart the well-known modular function j. I give an overview of two other "nonclassical" classes of modular function, namely the quasimodular (QM) and almost holomorphic modular (AHM) functions. These are perhaps less well-known than j, but have been studied by various authors including for example Masser, Shimura and Zagier. It turns out to be sufficient to focus on a particular QM function χ and its dual AHM function χ*, since these (together with j) generate the relevant fields. After discussing some of the properties of these functions, I go on to prove some Ax–Lindemann results about χ and χ*. I then combine these with a fairly standard method of o-minimality and point counting to prove the central result of the paper; a natural analogue of the modular André–Oort conjecture for the function χ*. 
540 |a © Société Arithmétique de Bordeaux, 2018 
650 4 |a Mathematics  |x Pure mathematics  |x Algebra 
650 4 |a Mathematics  |x Pure mathematics  |x Algebra  |x Polynomials 
650 4 |a Mathematics  |x Pure mathematics  |x Algebra  |x Coefficients 
650 4 |a Mathematics  |x Mathematical expressions  |x Mathematical theorems 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Coordinate systems 
650 4 |a Mathematics  |x Pure mathematics  |x Discrete mathematics  |x Number theory  |x Numbers  |x Real numbers  |x Rational numbers  |x Integers 
650 4 |a Mathematics  |x Mathematical expressions  |x Mathematical functions  |x Algebraic functions 
650 4 |a Mathematics  |x Mathematical objects  |x Discriminants 
650 4 |a Mathematics  |x Mathematical expressions  |x Mathematical functions 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t Journal de Théorie des Nombres de Bordeaux  |d Société Arithmétique de Bordeaux, 1993  |g 30(2018), 3, Seite 743-779  |w (DE-627)320967603  |w (DE-600)2028468-8  |x 21188572  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g number:3  |g pages:743-779 
856 4 0 |u https://www.jstor.org/stable/26608345  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 30  |j 2018  |e 3  |h 743-779