Role of the unfolded protein response in determining the fate of tumor cells and the promise of multi-targeted therapies

Although there have been advances in our understanding of carcinogenesis and development of new treatments, cancer remains a common cause of death. Many regulatory pathways are incompletely understood in cancer development and progression, with a prime example being those related to the endoplasmic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Cell Stress & Chaperones. - Elsevier. - 23(2018), 3, Seite 317-334
1. Verfasser: Shen, Kunyu (VerfasserIn)
Weitere Verfasser: Johnson, David W., Vesey, David A., McGuckin, Michael A., Gobe, Glenda C.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Cell Stress & Chaperones
Schlagworte:Health sciences Behavioral sciences Physical sciences Biological sciences
Beschreibung
Zusammenfassung:Although there have been advances in our understanding of carcinogenesis and development of new treatments, cancer remains a common cause of death. Many regulatory pathways are incompletely understood in cancer development and progression, with a prime example being those related to the endoplasmic reticulum (ER). The pathological sequelae that arise from disruption of ER homeostasis are not well defined. The ER is an organelle that is responsible for secretory protein biosynthesis and the quality control of protein folding. The ER triggers an unfolded protein response (UPR) when misfolded proteins accumulate, and while the UPR acts to restore protein folding and ER homeostasis, this response can work as a switch to determine the death or survival of cells. The treatment of cancer with agents that target the UPR has shown promising outcomes. The UPR has wide crosstalk with other signaling pathways. Multi-targeted cancer therapies which target the intersections within signaling networks have shown synergistic tumoricidal effects. In the present review, the basic cellular and signaling pathways of the ER and UPR are introduced; then the crosstalk between the ER and other signaling pathways is summarized; and ultimately, the evidence that the UPR is a potential target for cancer therapy is discussed. Regulation of the UPR downstream signaling is a common therapeutic target for different tumor types. Tumoricidal effects achieved from modulating the UPR downstream signaling could be enhanced by phosphodiesterase 5 (PDE5) inhibitors. Largely untapped by Western medicine for cancer therapies are Chinese herbal medicines. This review explores and discusses the value of some Chinese herbal extracts as PDE5 inhibitors.
ISSN:14661268