Multidimensional tree niches in a tropical dry forest

The extent to which interspecific niche differences structure plant communities is highly debated, with extreme viewpoints ranging from fine-scaled niche partitioning, where every species in the community is specialized to a distinct niche, to neutrality, where species have no niche or fitness diffe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Ecology. - Duke University Press. - 98(2017), 5, Seite 1334-1348
1. Verfasser: Pulla, Sandeep (VerfasserIn)
Weitere Verfasser: Suresh, Hebbalalu S., Dattaraja, Handanakere S., Sukumar, Raman
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Ecology
Schlagworte:Biological sciences Physical sciences
LEADER 01000caa a22002652 4500
001 JST13923599X
003 DE-627
005 20240626003637.0
007 cr uuu---uuuuu
008 240117s2017 xx |||||o 00| ||eng c
035 |a (DE-627)JST13923599X 
035 |a (JST)26165221 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pulla, Sandeep  |e verfasserin  |4 aut 
245 1 0 |a Multidimensional tree niches in a tropical dry forest 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The extent to which interspecific niche differences structure plant communities is highly debated, with extreme viewpoints ranging from fine-scaled niche partitioning, where every species in the community is specialized to a distinct niche, to neutrality, where species have no niche or fitness differences. However, there exists a default position wherein niches of species in a community are determined by their evolutionary and biogeographic histories, irrespective of other species within the community. According to this viewpoint, a broad range of pair-wise niche overlaps—from completely overlapping to completely distinct—are expected in any community without the need to invoke interspecific interactions. We develop a method that can test for both habitat associations and niche differences along an arbitrary number of spatial and temporal niche dimensions and apply it to a 24-yr data set of the eight dominant woody-plant species (representing 84% and 76% of total community abundance and basal area, respectively) from a 50-ha permanent plot in a southern Indian tropical dry forest, using edaphic, topographic, and precipitation variables as niche axes. Species separated into two broad groups in niche space—one consisting of three canopy species and the other of a canopy species and four understory species—along axes that corresponded mainly to variation in soil P, Al and a topographic index of wetness. Species within groups tended to have significantly greater niche overlap than expected by chance. Community-wide niche overlap in spatial and temporal niche axes was never smaller than expected by chance. Species-habitat associations were neither necessary nor sufficient preconditions for niche differences to be present. Our results suggest that this tropical dry-forest community consists of several tree species with broadly overlapping niches, and where significant niche differences do exist, they are not readily interpretable as evidence for niche differentiation. We argue, based on a survey of the literature, that many of the observed niche differences in tropical forests are more parsimoniously viewed as autecological differences between species that exist independently of interspecific interactions. 
540 |a © 2017 The Ecological Society of America 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Tropical forests 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Dry forests 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology  |x Forest ecosystems  |x Forest habitats 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Topographical elevation 
650 4 |a Biological sciences  |x Ecology  |x Animal ecology  |x Ecological niches  |x Niche differentiation 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Forest soils 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Dendrology  |x Trees 
655 4 |a research-article 
700 1 |a Suresh, Hebbalalu S.  |e verfasserin  |4 aut 
700 1 |a Dattaraja, Handanakere S.  |e verfasserin  |4 aut 
700 1 |a Sukumar, Raman  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ecology  |d Duke University Press  |g 98(2017), 5, Seite 1334-1348  |w (DE-627)311927165  |w (DE-600)2010140-5  |x 19399170  |7 nnns 
773 1 8 |g volume:98  |g year:2017  |g number:5  |g pages:1334-1348 
856 4 0 |u http://www.jstor.org/stable/26165221  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 98  |j 2017  |e 5  |h 1334-1348