Growth model for large branched three-dimensional hydraulic crack system in gas or oil shale

Recent analysis of gas outflow histories at wellheads shows that the hydraulic crack spacing must be of the order of 0.1 m (rather than 1 m or 10 m). Consequently, the existing models, limited to one or several cracks, are unrealistic. The reality is 105–106 almost vertical hydraulic cracks per frac...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Philosophical Transactions: Mathematical, Physical and Engineering Sciences. - The Royal Society. - 374(2016), 2078, Seite 1-19
1. Verfasser: Chau, Viet T. (VerfasserIn)
Weitere Verfasser: Bažant, Zdeněk P., Su, Yewang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Philosophical Transactions: Mathematical, Physical and Engineering Sciences
Schlagworte:Physical sciences Applied sciences Business
LEADER 01000caa a22002652 4500
001 JST137944179
003 DE-627
005 20240625225115.0
007 cr uuu---uuuuu
008 240112s2016 xx |||||o 00| ||eng c
035 |a (DE-627)JST137944179 
035 |a (JST)24760776 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chau, Viet T.  |e verfasserin  |4 aut 
245 1 0 |a Growth model for large branched three-dimensional hydraulic crack system in gas or oil shale 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Recent analysis of gas outflow histories at wellheads shows that the hydraulic crack spacing must be of the order of 0.1 m (rather than 1 m or 10 m). Consequently, the existing models, limited to one or several cracks, are unrealistic. The reality is 105–106 almost vertical hydraulic cracks per fracking stage. Here, we study the growth of two intersecting near-orthogonal systems of parallel hydraulic cracks spaced at 0.1 m, preferably following pre-existing rock joints. One key idea is that, to model lateral cracks branching from a primary crack wall, crack pressurization, by viscous Poiseuille-type flow, of compressible (proppant-laden) frac water must be complemented with the pressurization of a sufficient volume of micropores and microcracks by Darcy-type water diffusion into the shale, to generate tension along existing crack walls, overcoming the strength limit of the cohesive-crack or crack-band model. A second key idea is that enforcing the equilibrium of stresses in cracks, pores and water, with the generation of tension in the solid phase, requires a new three-phase medium concept, which is transitional between Biot's two-phase medium and Terzaghi's effective stress and introduces the loading of the solid by pressure gradients of diffusing pore water. A computer program, combining finite elements for deformation and fracture with volume elements for water flow, is developed to validate the new model. This article is part of the themed issue 'Energy and the subsurface'. 
540 |a © The Royal Society, 2016 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Rocks  |x Sedimentary rocks  |x Clastic sedimentary rocks  |x Mudrocks  |x Shales 
650 4 |a Applied sciences  |x Engineering  |x Hydraulic engineering  |x Hydraulics 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Extractive industries  |x Mining industries  |x Natural gas exploration  |x Gas drilling  |x Hydraulic fracturing 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Fluid mechanics  |x Fluid dynamics  |x Fluid pressure  |x Water pressure 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Continuum mechanics  |x Mechanical stress 
650 4 |a Applied sciences  |x Materials science  |x Material properties  |x Porosity 
650 4 |a Physical sciences  |x Physics  |x Condensed matter physics  |x Solid mechanics  |x Fracture mechanics 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Fluid mechanics 
650 4 |a Physical sciences  |x Physics  |x Condensed matter physics  |x Solid mechanics  |x Fracture mechanics  |x Surface cracks 
650 4 |a Applied sciences  |x Materials science  |x Material properties  |x Mechanical properties  |x Tensile properties  |x Tensile strength 
655 4 |a research-article 
700 1 |a Bažant, Zdeněk P.  |e verfasserin  |4 aut 
700 1 |a Su, Yewang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Philosophical Transactions: Mathematical, Physical and Engineering Sciences  |d The Royal Society  |g 374(2016), 2078, Seite 1-19  |w (DE-627)254635296  |w (DE-600)1462626-3  |x 1364503X  |7 nnns 
773 1 8 |g volume:374  |g year:2016  |g number:2078  |g pages:1-19 
856 4 0 |u http://www.jstor.org/stable/24760776  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2943 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 374  |j 2016  |e 2078  |h 1-19