Climate-change-driven deterioration of the condition of floodplain forest and the future for the avifauna

Aim We used models of remotely sensed estimates of forest-stand condition (degree of die-back) with models of avian responses to stand condition to determine how the avifauna responded to a 13-year drought, and how the avifauna might respond to a predicted much warmer and drier climate in the next 6...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Global Ecology and Biogeography. - John Wiley & Sons Ltd. - 23(2014), 1/2, Seite 191-202
1. Verfasser: Mac Nally, Ralph (VerfasserIn)
Weitere Verfasser: Lada, Hania, Cunningham, Shaun C., Thomson, James R., Fleishman, Erica
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Global Ecology and Biogeography
Schlagworte:Physical sciences Biological sciences
LEADER 01000caa a22002652 4500
001 JST137540787
003 DE-627
005 20240625221724.0
007 cr uuu---uuuuu
008 240110s2014 xx |||||o 00| ||eng c
035 |a (DE-627)JST137540787 
035 |a (JST)24034446 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mac Nally, Ralph  |e verfasserin  |4 aut 
245 1 0 |a Climate-change-driven deterioration of the condition of floodplain forest and the future for the avifauna 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Aim We used models of remotely sensed estimates of forest-stand condition (degree of die-back) with models of avian responses to stand condition to determine how the avifauna responded to a 13-year drought, and how the avifauna might respond to a predicted much warmer and drier climate in the next 60 years. Location Floodplain forests of the southern Murray–Darling Basin, Australia. Methods We selected 45 2-ha locations that spanned the full range of stand condition and conducted bird surveys and rapid assessments of breeding, which involved repeated measurements over the breeding season. These values were modelled as functions of stand condition and several other on-site predictors. We made hindcast estimates of the proportions of forest in different stand-condition classes. We developed a trajectory of change in these proportions under the regionally downscaled estimates of climate change under the A1F1 IPCC emission scenario, which were linked with patterns of change in drier, hotter extant forests. The hindcast and projected values were coupled with the results of the statistical models for the avifauna to provide future projections for the avifauna. Results Three avifaunal variables (measures of abundance, effective species richness and total breeding score summed for all species) were strongly related to stand condition. Hindcast estimates based on the assumption of original good condition suggested that the response variables had declined by > 25% since 1750. Projected declines in the response variables from 2009 to 2070 were > 29%, while differences between 1750 and 2070 were > 58%. Conclusions Stand condition strongly influences birds, so that reliable estimates of avifaunal change can be made by using remotely sensed estimates of stand condition. Given probable changes in forest condition under climate change, we project that the prospects for these avifauna are dire under the A1F1 or more extreme emission scenarios. 
540 |a Copyright © 2014 John Wiley & Sons Ltd. 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Landforms  |x Fluvial landforms  |x Alluvial landforms  |x Alluvial plains  |x Floodplains 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology  |x Forest ecosystems  |x Forest communities  |x Forest stands 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology  |x Forest ecosystems 
650 4 |a Biological sciences  |x Biology  |x Zoology  |x Animals  |x Birds 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Forest ecology  |x Forest ecosystems  |x Forest litter  |x Dead wood 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems  |x Aquatic ecosystems  |x Freshwater ecosystems 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biodiversity  |x Species diversity 
650 4 |a Biological sciences  |x Ecology  |x Population ecology  |x Synecology  |x Biocenosis  |x Plant communities  |x Forests  |x Riparian forests 
650 4 |a Biological sciences  |x Biogeography 
655 4 |a research-article 
700 1 |a Lada, Hania  |e verfasserin  |4 aut 
700 1 |a Cunningham, Shaun C.  |e verfasserin  |4 aut 
700 1 |a Thomson, James R.  |e verfasserin  |4 aut 
700 1 |a Fleishman, Erica  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global Ecology and Biogeography  |d John Wiley & Sons Ltd  |g 23(2014), 1/2, Seite 191-202  |w (DE-627)320610276  |w (DE-600)2021283-5  |x 14668238  |7 nnns 
773 1 8 |g volume:23  |g year:2014  |g number:1/2  |g pages:191-202 
856 4 0 |u http://dx.doi.org/10.1111/geb.12091  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_165 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 23  |j 2014  |e 1/2  |h 191-202