The Gopakumar-Vafa formula for symplectic manifolds

The Gopakumar-Vafa conjecture predicts that the Gromov-Witten invariants of a Calabi-Yau 3-fold can be canonically expressed in terms of integer invariants called BPS numbers. Using the methods of symplectic Gromov-Witten theory, we prove that the Gopakumar-Vafa conjecture holds for any symplectic C...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Annals of Mathematics. - Dept. of Mathematics, Princeton University, 1884. - 187(2018), 1, Seite 1-64
1. Verfasser: Ionel, Eleny-Nicoleta (VerfasserIn)
Weitere Verfasser: Parker, Thomas H.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Annals of Mathematics
Schlagworte:Mathematics Physical sciences Philosophy
LEADER 01000caa a22002652 4500
001 JST136679390
003 DE-627
005 20240625205957.0
007 cr uuu---uuuuu
008 240106s2018 xx |||||o 00| ||eng c
035 |a (DE-627)JST136679390 
035 |a (JST)26395706 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ionel, Eleny-Nicoleta  |e verfasserin  |4 aut 
245 1 4 |a The Gopakumar-Vafa formula for symplectic manifolds 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a The Gopakumar-Vafa conjecture predicts that the Gromov-Witten invariants of a Calabi-Yau 3-fold can be canonically expressed in terms of integer invariants called BPS numbers. Using the methods of symplectic Gromov-Witten theory, we prove that the Gopakumar-Vafa conjecture holds for any symplectic Calabi-Yau 6-manifold, and hence for Calabi-Yau 3-folds. The results extend to all symplectic 6-manifolds and to the genus zero GW invariants of semipositive manifolds. 
540 |a Copyright © 2018 Princeton University (Mathematics Department) 
650 4 |a Mathematics  |x Pure mathematics  |x Algebra  |x Coefficients 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Euclidean geometry  |x Geometric lines  |x Tangents 
650 4 |a Mathematics  |x Pure mathematics  |x Discrete mathematics  |x Number theory  |x Numbers  |x Real numbers  |x Rational numbers  |x Integers 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Coordinate systems 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Statistical physics  |x Dimensional analysis  |x Dimensionality  |x Abstract spaces  |x Topological spaces  |x Mathematical manifolds 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geodesy  |x Cartography  |x Maps 
650 4 |a Philosophy  |x Logic  |x Logical topics  |x Formal logic  |x Mathematical logic  |x Denotational semantics  |x Mathematical linearity  |x Linearization 
650 4 |a Mathematics  |x Mathematical objects  |x Mathematical series  |x Power series  |x Power series coefficients 
650 4 |a Mathematics  |x Mathematical values  |x Critical values  |x Critical points 
655 4 |a research-article 
700 1 |a Parker, Thomas H.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Annals of Mathematics  |d Dept. of Mathematics, Princeton University, 1884  |g 187(2018), 1, Seite 1-64  |w (DE-627)265550408  |w (DE-600)1465446-5  |x 0003486X  |7 nnns 
773 1 8 |g volume:187  |g year:2018  |g number:1  |g pages:1-64 
856 4 0 |u https://www.jstor.org/stable/26395706  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_380 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 187  |j 2018  |e 1  |h 1-64