On choosing mixture components via non-local priors

Choosing the number of mixture components remains an elusive challenge. Model selection criteria can be either overly liberal or conservative and return poorly separated components of limited practical use. We formalize non-local priors (NLPs) for mixtures and show how they lead to well-separated co...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of the Royal Statistical Society. Series B (Statistical Methodology). - Blackwell Publishers. - 81(2019), 5, Seite 809-837
1. Verfasser: Fúquene, Jairo (VerfasserIn)
Weitere Verfasser: Steel, Mark, Rossell, David
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of the Royal Statistical Society. Series B (Statistical Methodology)