|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
JST135924332 |
003 |
DE-627 |
005 |
20240625195333.0 |
007 |
cr uuu---uuuuu |
008 |
240105s2019 xx |||||o 00| ||eng c |
035 |
|
|
|a (DE-627)JST135924332
|
035 |
|
|
|a (JST)26773206
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Dobriban, Edgar
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Deterministic parallel analysis
|b an improved method for selecting factors and principal components
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a Computermedien
|b c
|2 rdamedia
|
338 |
|
|
|a Online-Ressource
|b cr
|2 rdacarrier
|
520 |
|
|
|a Factor analysis and principal component analysis are used in many application areas. The first step, choosing the number of components, remains a serious challenge. Our work proposes improved methods for this important problem. One of the most popular state of the art methods is parallel analysis (PA), which compares the observed factor strengths with simulated strengths under a noise-only model. The paper proposes improvements to PA. We first derandomize it, proposing deterministic PA, which is faster and more reproducible than PA. Both PA and deterministic PA are prone to a shadowing phenomenon in which a strong factor makes it difficult to detect smaller but more interesting factors. We propose deflation to counter shadowing. We also propose to raise the decision threshold to improve estimation accuracy. We prove several consistency results for our methods, and test them in simulations. We also illustrate our methods on data from the human genome diversity project, where they significantly improve the accuracy.
|
540 |
|
|
|a © 2018 Royal Statistical Society
|
655 |
|
4 |
|a research-article
|
700 |
1 |
|
|a Owen, Art B.
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of the Royal Statistical Society. Series B (Statistical Methodology)
|d Blackwell Publishers
|g 81(2019), 1, Seite 163-183
|w (DE-627)30219746X
|w (DE-600)1490719-7
|x 14679868
|7 nnns
|
773 |
1 |
8 |
|g volume:81
|g year:2019
|g number:1
|g pages:163-183
|
856 |
4 |
0 |
|u https://www.jstor.org/stable/26773206
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_JST
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_20
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_23
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_26
|
912 |
|
|
|a GBV_ILN_31
|
912 |
|
|
|a GBV_ILN_32
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_63
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_69
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_73
|
912 |
|
|
|a GBV_ILN_74
|
912 |
|
|
|a GBV_ILN_90
|
912 |
|
|
|a GBV_ILN_95
|
912 |
|
|
|a GBV_ILN_100
|
912 |
|
|
|a GBV_ILN_101
|
912 |
|
|
|a GBV_ILN_105
|
912 |
|
|
|a GBV_ILN_110
|
912 |
|
|
|a GBV_ILN_120
|
912 |
|
|
|a GBV_ILN_138
|
912 |
|
|
|a GBV_ILN_150
|
912 |
|
|
|a GBV_ILN_151
|
912 |
|
|
|a GBV_ILN_152
|
912 |
|
|
|a GBV_ILN_161
|
912 |
|
|
|a GBV_ILN_165
|
912 |
|
|
|a GBV_ILN_170
|
912 |
|
|
|a GBV_ILN_171
|
912 |
|
|
|a GBV_ILN_187
|
912 |
|
|
|a GBV_ILN_213
|
912 |
|
|
|a GBV_ILN_224
|
912 |
|
|
|a GBV_ILN_230
|
912 |
|
|
|a GBV_ILN_266
|
912 |
|
|
|a GBV_ILN_285
|
912 |
|
|
|a GBV_ILN_293
|
912 |
|
|
|a GBV_ILN_370
|
912 |
|
|
|a GBV_ILN_374
|
912 |
|
|
|a GBV_ILN_602
|
912 |
|
|
|a GBV_ILN_636
|
912 |
|
|
|a GBV_ILN_647
|
912 |
|
|
|a GBV_ILN_702
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2004
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2011
|
912 |
|
|
|a GBV_ILN_2014
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2020
|
912 |
|
|
|a GBV_ILN_2021
|
912 |
|
|
|a GBV_ILN_2025
|
912 |
|
|
|a GBV_ILN_2026
|
912 |
|
|
|a GBV_ILN_2027
|
912 |
|
|
|a GBV_ILN_2031
|
912 |
|
|
|a GBV_ILN_2034
|
912 |
|
|
|a GBV_ILN_2037
|
912 |
|
|
|a GBV_ILN_2038
|
912 |
|
|
|a GBV_ILN_2039
|
912 |
|
|
|a GBV_ILN_2044
|
912 |
|
|
|a GBV_ILN_2048
|
912 |
|
|
|a GBV_ILN_2049
|
912 |
|
|
|a GBV_ILN_2050
|
912 |
|
|
|a GBV_ILN_2055
|
912 |
|
|
|a GBV_ILN_2056
|
912 |
|
|
|a GBV_ILN_2057
|
912 |
|
|
|a GBV_ILN_2059
|
912 |
|
|
|a GBV_ILN_2061
|
912 |
|
|
|a GBV_ILN_2064
|
912 |
|
|
|a GBV_ILN_2065
|
912 |
|
|
|a GBV_ILN_2068
|
912 |
|
|
|a GBV_ILN_2088
|
912 |
|
|
|a GBV_ILN_2093
|
912 |
|
|
|a GBV_ILN_2106
|
912 |
|
|
|a GBV_ILN_2107
|
912 |
|
|
|a GBV_ILN_2108
|
912 |
|
|
|a GBV_ILN_2110
|
912 |
|
|
|a GBV_ILN_2111
|
912 |
|
|
|a GBV_ILN_2112
|
912 |
|
|
|a GBV_ILN_2113
|
912 |
|
|
|a GBV_ILN_2118
|
912 |
|
|
|a GBV_ILN_2119
|
912 |
|
|
|a GBV_ILN_2122
|
912 |
|
|
|a GBV_ILN_2129
|
912 |
|
|
|a GBV_ILN_2143
|
912 |
|
|
|a GBV_ILN_2144
|
912 |
|
|
|a GBV_ILN_2147
|
912 |
|
|
|a GBV_ILN_2148
|
912 |
|
|
|a GBV_ILN_2152
|
912 |
|
|
|a GBV_ILN_2153
|
912 |
|
|
|a GBV_ILN_2190
|
912 |
|
|
|a GBV_ILN_2232
|
912 |
|
|
|a GBV_ILN_2336
|
912 |
|
|
|a GBV_ILN_2470
|
912 |
|
|
|a GBV_ILN_2507
|
912 |
|
|
|a GBV_ILN_2522
|
912 |
|
|
|a GBV_ILN_2548
|
912 |
|
|
|a GBV_ILN_2932
|
912 |
|
|
|a GBV_ILN_2947
|
912 |
|
|
|a GBV_ILN_2949
|
912 |
|
|
|a GBV_ILN_2950
|
912 |
|
|
|a GBV_ILN_4012
|
912 |
|
|
|a GBV_ILN_4035
|
912 |
|
|
|a GBV_ILN_4037
|
912 |
|
|
|a GBV_ILN_4046
|
912 |
|
|
|a GBV_ILN_4112
|
912 |
|
|
|a GBV_ILN_4125
|
912 |
|
|
|a GBV_ILN_4126
|
912 |
|
|
|a GBV_ILN_4242
|
912 |
|
|
|a GBV_ILN_4246
|
912 |
|
|
|a GBV_ILN_4249
|
912 |
|
|
|a GBV_ILN_4251
|
912 |
|
|
|a GBV_ILN_4305
|
912 |
|
|
|a GBV_ILN_4306
|
912 |
|
|
|a GBV_ILN_4307
|
912 |
|
|
|a GBV_ILN_4313
|
912 |
|
|
|a GBV_ILN_4322
|
912 |
|
|
|a GBV_ILN_4323
|
912 |
|
|
|a GBV_ILN_4324
|
912 |
|
|
|a GBV_ILN_4325
|
912 |
|
|
|a GBV_ILN_4326
|
912 |
|
|
|a GBV_ILN_4333
|
912 |
|
|
|a GBV_ILN_4334
|
912 |
|
|
|a GBV_ILN_4335
|
912 |
|
|
|a GBV_ILN_4336
|
912 |
|
|
|a GBV_ILN_4338
|
912 |
|
|
|a GBV_ILN_4346
|
912 |
|
|
|a GBV_ILN_4393
|
912 |
|
|
|a GBV_ILN_4700
|
951 |
|
|
|a AR
|
952 |
|
|
|d 81
|j 2019
|e 1
|h 163-183
|