|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
JST135924308 |
003 |
DE-627 |
005 |
20240625195333.0 |
007 |
cr uuu---uuuuu |
008 |
240105s2019 xx |||||o 00| ||eng c |
035 |
|
|
|a (DE-627)JST135924308
|
035 |
|
|
|a (JST)26773203
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Schmidt, Dennis
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Characterization of c-, L- and ϕk -optimal designs for a class of non-linear multiple-regression models
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a Computermedien
|b c
|2 rdamedia
|
338 |
|
|
|a Online-Ressource
|b cr
|2 rdacarrier
|
520 |
|
|
|a Optimal designs for multiple-regression models are determined. We consider a general class of non-linear models including proportional hazards models with different censoring schemes, the Poisson and the negative binomial model. For these models we provide a complete characterization of c-optimal designs for all vectors c in the case of a single covariate. For multiple regression with an arbitrary number of covariates, c-optimal designs for certain vectors c are derived analytically. Using some general results on the structure of optimal designs for multiple regression, we determine L- and ϕk -optimal designs for models with an arbitrary number of covariates.
|
540 |
|
|
|a © 2018 Royal Statistical Society
|
655 |
|
4 |
|a research-article
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of the Royal Statistical Society. Series B (Statistical Methodology)
|d Blackwell Publishers
|g 81(2019), 1, Seite 101-120
|w (DE-627)30219746X
|w (DE-600)1490719-7
|x 14679868
|7 nnns
|
773 |
1 |
8 |
|g volume:81
|g year:2019
|g number:1
|g pages:101-120
|
856 |
4 |
0 |
|u https://www.jstor.org/stable/26773203
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_JST
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_20
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_23
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_26
|
912 |
|
|
|a GBV_ILN_31
|
912 |
|
|
|a GBV_ILN_32
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_63
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_69
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_73
|
912 |
|
|
|a GBV_ILN_74
|
912 |
|
|
|a GBV_ILN_90
|
912 |
|
|
|a GBV_ILN_95
|
912 |
|
|
|a GBV_ILN_100
|
912 |
|
|
|a GBV_ILN_101
|
912 |
|
|
|a GBV_ILN_105
|
912 |
|
|
|a GBV_ILN_110
|
912 |
|
|
|a GBV_ILN_120
|
912 |
|
|
|a GBV_ILN_138
|
912 |
|
|
|a GBV_ILN_150
|
912 |
|
|
|a GBV_ILN_151
|
912 |
|
|
|a GBV_ILN_152
|
912 |
|
|
|a GBV_ILN_161
|
912 |
|
|
|a GBV_ILN_165
|
912 |
|
|
|a GBV_ILN_170
|
912 |
|
|
|a GBV_ILN_171
|
912 |
|
|
|a GBV_ILN_187
|
912 |
|
|
|a GBV_ILN_213
|
912 |
|
|
|a GBV_ILN_224
|
912 |
|
|
|a GBV_ILN_230
|
912 |
|
|
|a GBV_ILN_266
|
912 |
|
|
|a GBV_ILN_285
|
912 |
|
|
|a GBV_ILN_293
|
912 |
|
|
|a GBV_ILN_370
|
912 |
|
|
|a GBV_ILN_374
|
912 |
|
|
|a GBV_ILN_602
|
912 |
|
|
|a GBV_ILN_636
|
912 |
|
|
|a GBV_ILN_647
|
912 |
|
|
|a GBV_ILN_702
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2004
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2011
|
912 |
|
|
|a GBV_ILN_2014
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2020
|
912 |
|
|
|a GBV_ILN_2021
|
912 |
|
|
|a GBV_ILN_2025
|
912 |
|
|
|a GBV_ILN_2026
|
912 |
|
|
|a GBV_ILN_2027
|
912 |
|
|
|a GBV_ILN_2031
|
912 |
|
|
|a GBV_ILN_2034
|
912 |
|
|
|a GBV_ILN_2037
|
912 |
|
|
|a GBV_ILN_2038
|
912 |
|
|
|a GBV_ILN_2039
|
912 |
|
|
|a GBV_ILN_2044
|
912 |
|
|
|a GBV_ILN_2048
|
912 |
|
|
|a GBV_ILN_2049
|
912 |
|
|
|a GBV_ILN_2050
|
912 |
|
|
|a GBV_ILN_2055
|
912 |
|
|
|a GBV_ILN_2056
|
912 |
|
|
|a GBV_ILN_2057
|
912 |
|
|
|a GBV_ILN_2059
|
912 |
|
|
|a GBV_ILN_2061
|
912 |
|
|
|a GBV_ILN_2064
|
912 |
|
|
|a GBV_ILN_2065
|
912 |
|
|
|a GBV_ILN_2068
|
912 |
|
|
|a GBV_ILN_2088
|
912 |
|
|
|a GBV_ILN_2093
|
912 |
|
|
|a GBV_ILN_2106
|
912 |
|
|
|a GBV_ILN_2107
|
912 |
|
|
|a GBV_ILN_2108
|
912 |
|
|
|a GBV_ILN_2110
|
912 |
|
|
|a GBV_ILN_2111
|
912 |
|
|
|a GBV_ILN_2112
|
912 |
|
|
|a GBV_ILN_2113
|
912 |
|
|
|a GBV_ILN_2118
|
912 |
|
|
|a GBV_ILN_2119
|
912 |
|
|
|a GBV_ILN_2122
|
912 |
|
|
|a GBV_ILN_2129
|
912 |
|
|
|a GBV_ILN_2143
|
912 |
|
|
|a GBV_ILN_2144
|
912 |
|
|
|a GBV_ILN_2147
|
912 |
|
|
|a GBV_ILN_2148
|
912 |
|
|
|a GBV_ILN_2152
|
912 |
|
|
|a GBV_ILN_2153
|
912 |
|
|
|a GBV_ILN_2190
|
912 |
|
|
|a GBV_ILN_2232
|
912 |
|
|
|a GBV_ILN_2336
|
912 |
|
|
|a GBV_ILN_2470
|
912 |
|
|
|a GBV_ILN_2507
|
912 |
|
|
|a GBV_ILN_2522
|
912 |
|
|
|a GBV_ILN_2548
|
912 |
|
|
|a GBV_ILN_2932
|
912 |
|
|
|a GBV_ILN_2947
|
912 |
|
|
|a GBV_ILN_2949
|
912 |
|
|
|a GBV_ILN_2950
|
912 |
|
|
|a GBV_ILN_4012
|
912 |
|
|
|a GBV_ILN_4035
|
912 |
|
|
|a GBV_ILN_4037
|
912 |
|
|
|a GBV_ILN_4046
|
912 |
|
|
|a GBV_ILN_4112
|
912 |
|
|
|a GBV_ILN_4125
|
912 |
|
|
|a GBV_ILN_4126
|
912 |
|
|
|a GBV_ILN_4242
|
912 |
|
|
|a GBV_ILN_4246
|
912 |
|
|
|a GBV_ILN_4249
|
912 |
|
|
|a GBV_ILN_4251
|
912 |
|
|
|a GBV_ILN_4305
|
912 |
|
|
|a GBV_ILN_4306
|
912 |
|
|
|a GBV_ILN_4307
|
912 |
|
|
|a GBV_ILN_4313
|
912 |
|
|
|a GBV_ILN_4322
|
912 |
|
|
|a GBV_ILN_4323
|
912 |
|
|
|a GBV_ILN_4324
|
912 |
|
|
|a GBV_ILN_4325
|
912 |
|
|
|a GBV_ILN_4326
|
912 |
|
|
|a GBV_ILN_4333
|
912 |
|
|
|a GBV_ILN_4334
|
912 |
|
|
|a GBV_ILN_4335
|
912 |
|
|
|a GBV_ILN_4336
|
912 |
|
|
|a GBV_ILN_4338
|
912 |
|
|
|a GBV_ILN_4346
|
912 |
|
|
|a GBV_ILN_4393
|
912 |
|
|
|a GBV_ILN_4700
|
951 |
|
|
|a AR
|
952 |
|
|
|d 81
|j 2019
|e 1
|h 101-120
|