ON MAXIMAL STABLE QUOTIENTS OF DEFINABLE GROUPS IN NIP THEORIES
For G a group definable in a saturated model of a NIP theory T, we prove that there is a smallest type-definable subgroup H of G such that the quotient G/H is stable. This generalizes the existence of G 00, the smallest type-definable subgroup of G of bounded index.
Publié dans: | The Journal of Symbolic Logic. - Cambridge University Press. - 83(2018), 1, Seite 117-122 |
---|---|
Auteur principal: | |
Autres auteurs: | |
Format: | Article en ligne |
Langue: | English |
Publié: |
2018
|
Accès à la collection: | The Journal of Symbolic Logic |
Sujets: | stability NIP hyperdefinability definable groups |
Accès en ligne |
Volltext |