ON MAXIMAL STABLE QUOTIENTS OF DEFINABLE GROUPS IN NIP THEORIES

For G a group definable in a saturated model of a NIP theory T, we prove that there is a smallest type-definable subgroup H of G such that the quotient G/H is stable. This generalizes the existence of G 00, the smallest type-definable subgroup of G of bounded index.

Détails bibliographiques
Publié dans:The Journal of Symbolic Logic. - Cambridge University Press. - 83(2018), 1, Seite 117-122
Auteur principal: HASKEL, MIKE (Auteur)
Autres auteurs: PILLAY, ANAND
Format: Article en ligne
Langue:English
Publié: 2018
Accès à la collection:The Journal of Symbolic Logic
Sujets:stability NIP hyperdefinability definable groups