PARTICLE SYSTEMS WITH SINGULAR INTERACTION THROUGH HITTING TIMES : APPLICATION IN SYSTEMIC RISK MODELING

We propose an interacting particle system to model the evolution of a system of banks with mutual exposures. In this model, a bank defaults when its normalized asset value hits a lower threshold, and its default causes instantaneous losses to other banks, possibly triggering a cascade of defaults. T...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The Annals of Applied Probability. - Institute of Mathematical Statistics. - 29(2019), 1, Seite 89-129
1. Verfasser: Nadtochiy, Sergey (VerfasserIn)
Weitere Verfasser: Shkolnikov, Mykhaylo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:The Annals of Applied Probability
Schlagworte:Banking systems blow-ups in parabolic partial differential equations default cascades interacting particle systems large system limits loss of continuity mean-field models noncore exposures nonlinear Cauchy–Dirichlet problems regularity estimates mehr... self-excitation singular interaction systemic crises systemic risk
LEADER 01000caa a22002652 4500
001 JST134648420
003 DE-627
005 20240625180459.0
007 cr uuu---uuuuu
008 230311s2019 xx |||||o 00| ||eng c
035 |a (DE-627)JST134648420 
035 |a (JST)26581786 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nadtochiy, Sergey  |e verfasserin  |4 aut 
245 1 0 |a PARTICLE SYSTEMS WITH SINGULAR INTERACTION THROUGH HITTING TIMES  |b APPLICATION IN SYSTEMIC RISK MODELING 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a We propose an interacting particle system to model the evolution of a system of banks with mutual exposures. In this model, a bank defaults when its normalized asset value hits a lower threshold, and its default causes instantaneous losses to other banks, possibly triggering a cascade of defaults. The strength of this interaction is determined by the level of the so-called noncore exposure. We show that, when the size of the system becomes large, the cumulative loss process of a bank resulting from the defaults of other banks exhibits discontinuities. These discontinuities are naturally interpreted as systemic events, and we characterize them explicitly in terms of the level of noncore exposure and the fraction of banks that are "about to default." The main mathematical challenges of our work stem from the very singular nature of the interaction between the particles, which is inherited by the limiting system. A similar particle system is analyzed in [Ann. Appl. Probab. 25 (2015) 2096–2133] and [Stochastic Process. Appl. 125 (2015) 2451–2492], and we build on and extend their results. In particular, we characterize the large-population limit of the system and analyze the jump times, the regularity between jumps, and the local uniqueness of the limiting process. 
540 |a © Institute of Mathematical Statistics, 2019 
650 4 |a Banking systems 
650 4 |a blow-ups in parabolic partial differential equations 
650 4 |a default cascades 
650 4 |a interacting particle systems 
650 4 |a large system limits 
650 4 |a loss of continuity 
650 4 |a mean-field models 
650 4 |a noncore exposures 
650 4 |a nonlinear Cauchy–Dirichlet problems 
650 4 |a regularity estimates 
650 4 |a self-excitation 
650 4 |a singular interaction 
650 4 |a systemic crises 
650 4 |a systemic risk 
655 4 |a research-article 
700 1 |a Shkolnikov, Mykhaylo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t The Annals of Applied Probability  |d Institute of Mathematical Statistics  |g 29(2019), 1, Seite 89-129  |w (DE-627)270937838  |w (DE-600)1478737-4  |x 10505164  |7 nnns 
773 1 8 |g volume:29  |g year:2019  |g number:1  |g pages:89-129 
856 4 0 |u https://www.jstor.org/stable/26581786  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 29  |j 2019  |e 1  |h 89-129