Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes

Floods can completely submerge some rice (Oryza sativa L.) fields. Leaves of rice have gas films that aid O 2 and CO 2 exchange under water. The present study explored the relationship between gas film persistence and underwater net photosynthesis (P N ) as influenced by genotype and submergence dur...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of Experimental Botany. - Oxford University Press. - 65(2014), 12, Seite 3225-3233
1. Verfasser: Winkel, Anders (VerfasserIn)
Weitere Verfasser: Pedersen, Ole, Ella, Evangelina, Ismail, Abdelbagi M., Colmer, Timothy D.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2014
Zugriff auf das übergeordnete Werk:Journal of Experimental Botany
Schlagworte:Biological sciences Mathematics Physical sciences Applied sciences
LEADER 01000caa a22002652 4500
001 JST130331236
003 DE-627
005 20240625132547.0
007 cr uuu---uuuuu
008 210731s2014 xx |||||o 00| ||eng c
035 |a (DE-627)JST130331236 
035 |a (JST)24043845 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Winkel, Anders  |e verfasserin  |4 aut 
245 1 0 |a Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes 
264 1 |c 2014 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Floods can completely submerge some rice (Oryza sativa L.) fields. Leaves of rice have gas films that aid O 2 and CO 2 exchange under water. The present study explored the relationship between gas film persistence and underwater net photosynthesis (P N ) as influenced by genotype and submergence duration. Four contrasting genotypes (FR13A, IR42, Swarna, and Swarna-Sub1) were submerged for 13 days in the field and leaf gas films, chlorophyll, and the capacity for underwater P N at near ambient and high CO 2 were assessed with time of submergence. At high CO 2 during the P N assay, all genotypes initially showed high rates of underwater P N , and this rate was not affected by time of submergence in FR13A. This superior photosynthetic performance of FR13A was not evident in Swarna-Sub1 (carrying the SUB1 QTL) and the declines in underwater P N in both Swarna-Sub1 and Swarna were equal to that in IR42. At near ambient CO 2 concentration, underwater P N declined in all four genotypes and this corresponded with loss of leaf gas films with time of submergence. FR13A retained leaf gas films moderately longer than the other genotypes, but gas film retention was not linked to SUB1. Diverse rice germplasm should be screened for gas film persistence during submergence, as this trait could potentially increase carbohydrate status and internal aeration owing to increased underwater P N , which contributes to submergence tolerance in rice. 
540 |a © Society for Experimental Biology 2014 
650 4 |a Biological sciences  |x Biology  |x Genetics  |x Genotypes 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Crops  |x Field crops  |x Food crops  |x Grains  |x Cereal grains  |x Rice 
650 4 |a Biological sciences  |x Biochemistry  |x Biomolecules  |x Biological pigments  |x Chlorophylls 
650 4 |a Biological sciences  |x Biochemistry  |x Metabolism  |x Autotrophic processes  |x Photosynthesis 
650 4 |a Mathematics  |x Applied mathematics  |x Statistics  |x Applied statistics  |x Statistical physics  |x Dimensional analysis  |x Film thickness 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Floods 
650 4 |a Physical sciences  |x Chemistry  |x Chemical reactions  |x Chemical processes  |x Aeration 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant morphology  |x Plant vegetation  |x Plant roots 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Lowlands 
650 4 |a Applied sciences  |x Materials science  |x Material properties  |x Buoyancy  |x RESEARCH PAPER 
655 4 |a research-article 
700 1 |a Pedersen, Ole  |e verfasserin  |4 aut 
700 1 |a Ella, Evangelina  |e verfasserin  |4 aut 
700 1 |a Ismail, Abdelbagi M.  |e verfasserin  |4 aut 
700 1 |a Colmer, Timothy D.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of Experimental Botany  |d Oxford University Press  |g 65(2014), 12, Seite 3225-3233  |w (DE-627)266016235  |w (DE-600)1466717-4  |x 14602431  |7 nnns 
773 1 8 |g volume:65  |g year:2014  |g number:12  |g pages:3225-3233 
856 4 0 |u http://dx.doi.org/10.1093/jxb/eru166  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_121 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_152 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_206 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2043 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2070 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2098 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2116 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2145 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2158 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2446 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2810 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4277 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4328 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4392 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
912 |a GBV_ILN_4753 
951 |a AR 
952 |d 65  |j 2014  |e 12  |h 3225-3233