CO₂ and soil water potential as regulators of the growth and N fraction derived from fixation of a legume in tallgrass prairie communities

Background and Aims CO₂ enrichment may increase N input to ecosystems by increasing N₂ fixation, but the fixation-CO₂ response depends on factors such as soil water availability that are influenced by soil properties. Methods We used the δ¹⁵N natural abundance method to estimate the proportion of N...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant and Soil. - Springer Science + Business Media. - 409(2016), 1/2, Seite 361-370
1. Verfasser: Polley, H. Wayne (VerfasserIn)
Weitere Verfasser: Collins, Harold P., Reichmann, Lara G., Fay, Philip A.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2016
Zugriff auf das übergeordnete Werk:Plant and Soil
Schlagworte:Applied sciences Biological sciences Physical sciences
LEADER 01000caa a22002652 4500
001 JST13032552X
003 DE-627
005 20240625132457.0
007 cr uuu---uuuuu
008 210731s2016 xx |||||o 00| ||eng c
035 |a (DE-627)JST13032552X 
035 |a (JST)44245236 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Polley, H. Wayne  |e verfasserin  |4 aut 
245 1 0 |a CO₂ and soil water potential as regulators of the growth and N fraction derived from fixation of a legume in tallgrass prairie communities 
264 1 |c 2016 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Background and Aims CO₂ enrichment may increase N input to ecosystems by increasing N₂ fixation, but the fixation-CO₂ response depends on factors such as soil water availability that are influenced by soil properties. Methods We used the δ¹⁵N natural abundance method to estimate the proportion of N in the legume Desmanthus illinoensis that was derived from N₂ fixation following 2-8 years of growth along a subambient to elevated CO₂ gradient. Desmanthus was grown in tallgrass prairie communities on each of three soils of differing texture. Results Only on a clay soil was it possible to calculate fixation (Nfix; g N m⁻²). The fraction of legume N derived from fixation (Ndfa) decreased by 20 % as CO₂ increased from subambient to elevated concentrations. The negative effect of reduced Ndfa on Nfix was obscured by variation in Desmanthus production along the CO₂ gradient that was positively linked to the ANPP-CO₂ response of communities. Across soils, legume production was negatively correlated with soil water potential to 0.3 m depth (ψsoil). Conclusions Nfix in grasslands may depend primarily on ψsoil as influenced by soil hydrological properties. CO₂ enrichment may reduce Nfix during years in which the legume-CO₂ and related ANPP-CO₂ response is small by depressing Ndfa. 
540 |a © Springer Science+Business Media 2016 
650 4 |a Applied sciences  |x Food science  |x Foodstuffs  |x Food  |x Edible seeds  |x Legumes 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Prairie soils 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Clay soils 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Sandy loam soils 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Silty soils 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Pedology  |x Soil water 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants  |x Grasses 
650 4 |a Biological sciences  |x Ecology  |x Biomass  |x Biomass production 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Rocks  |x Monoliths 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural sciences  |x Agronomy  |x Soil science  |x Soils  |x Agricultural soils 
655 4 |a research-article 
700 1 |a Collins, Harold P.  |e verfasserin  |4 aut 
700 1 |a Reichmann, Lara G.  |e verfasserin  |4 aut 
700 1 |a Fay, Philip A.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant and Soil  |d Springer Science + Business Media  |g 409(2016), 1/2, Seite 361-370  |w (DE-627)270934979  |w (DE-600)1478535-3  |x 15735036  |7 nnns 
773 1 8 |g volume:409  |g year:2016  |g number:1/2  |g pages:361-370 
856 4 0 |u http://www.jstor.org/stable/44245236  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_152 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_206 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_250 
912 |a GBV_ILN_281 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2065 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2070 
912 |a GBV_ILN_2086 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2116 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2446 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4328 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 409  |j 2016  |e 1/2  |h 361-370