Aerial and underwater surveys reveal temporal variation in cleaning-station use by sea turtles at a temperate breeding area

Many animals invest time and energy in removing unwanted organisms from their body surface; however, the benefits of symbiotic cleaning associations to ‘clients’ are disputed. We used aerial (unmanned aerial vehicles, UAVs) and underwater surveys to investigate whether loggerhead sea turtles Caretta...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Marine Ecology Progress Series. - Inter-Research, 1979. - 575(2017) vom: Juli, Seite 153-164
1. Verfasser: Schofield, Gail (VerfasserIn)
Weitere Verfasser: Papafitsoros, Kostas, Haughey, Rebecca, Katselidis, Kostas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Marine Ecology Progress Series
Schlagworte:Active sampling Competition Foraging Host−parasite relationship Parasite defence grooming Unmanned aerial vehicles UAVs Drone Loggerhead Caretta caretta
LEADER 01000caa a22002652 4500
001 JST128381221
003 DE-627
005 20240625113704.0
007 cr uuu---uuuuu
008 210701s2017 xx |||||o 00| ||eng c
035 |a (DE-627)JST128381221 
035 |a (JST)26403656 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Schofield, Gail  |e verfasserin  |4 aut 
245 1 0 |a Aerial and underwater surveys reveal temporal variation in cleaning-station use by sea turtles at a temperate breeding area 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Many animals invest time and energy in removing unwanted organisms from their body surface; however, the benefits of symbiotic cleaning associations to ‘clients’ are disputed. We used aerial (unmanned aerial vehicles, UAVs) and underwater surveys to investigate whether loggerhead sea turtles Caretta caretta actively or incidentally invested in using fish-cleaning stations at a temperate breeding area (Zakynthos, Greece), although they are expected to minimize movement to divert energy to egg development. If the former, we hypothesized that turtles would swim into the station (UAV surveys), visit multiple times and compete for access (underwater surveys). Underwater surveys showed that station location changed annually, ruling out usage of a long-term cognitive memory. UAV surveys showed that turtles began using the station immediately after mating activity decreased (mid-May), with use remaining high until females departed (July). Wind direction (primarily southerly) was correlated with the frequency of use (UAV and underwater surveys) and direction of movement through the station (from upwind to downwind); however, turtles swam actively (i.e. did not simply drift). Of the unique turtles photo-identified during underwater surveys, 25 and 18% of individuals were detected multiple times within and across surveys, respectively, with at least 2 turtles competing for access to cleaner fish in most surveys. UAV surveys showed that more turtles were present within 100 m of the station compared to the turtles detected by underwater surveys at the station, suggesting individuals may visit the station repeatedly through the day. We conclude that turtles might initially find a station incidentally; however, repeated visits and competition for access suggest that turtles receive direct (stress relief, epibiont removal) and/or indirect (health, fitness, migratory) benefits. 
540 |a © Inter-Research 2017 
650 4 |a Active sampling 
650 4 |a Competition 
650 4 |a Foraging 
650 4 |a Host−parasite relationship 
650 4 |a Parasite defence grooming 
650 4 |a Unmanned aerial vehicles 
650 4 |a UAVs 
650 4 |a Drone 
650 4 |a Loggerhead 
650 4 |a Caretta caretta 
655 4 |a research-article 
700 1 |a Papafitsoros, Kostas  |e verfasserin  |4 aut 
700 1 |a Haughey, Rebecca  |e verfasserin  |4 aut 
700 1 |a Katselidis, Kostas  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Marine Ecology Progress Series  |d Inter-Research, 1979  |g 575(2017) vom: Juli, Seite 153-164  |w (DE-627)320617998  |w (DE-600)2022265-8  |x 16161599  |7 nnns 
773 1 8 |g volume:575  |g year:2017  |g month:07  |g pages:153-164 
856 4 0 |u https://www.jstor.org/stable/26403656  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_647 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 575  |j 2017  |c 07  |h 153-164