Abiotic and biotic controls on the copepod Pseudodiaptomus forbesi in the upper San Francisco Estuary

Salinity is a key control on species distribution in estuaries, but interspecific interactions can shift distributions of estuarine species away from physiologically optimal salinities. The distribution of the introduced calanoid copepod Pseudodiaptomus forbesi in the upper San Francisco Estuary (SF...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Marine Ecology Progress Series. - Inter-Research, 1979. - 581(2017) vom: Okt., Seite 85-101
1. Verfasser: Kayfetz, Karen (VerfasserIn)
Weitere Verfasser: Kimmerer, Wim
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:Marine Ecology Progress Series
Schlagworte:Competition Distribution Facilitation Low-salinity zone Food web Limnoithona tetraspina Salinity tolerance
LEADER 01000caa a22002652 4500
001 JST128379170
003 DE-627
005 20240625113644.0
007 cr uuu---uuuuu
008 210701s2017 xx |||||o 00| ||eng c
035 |a (DE-627)JST128379170 
035 |a (JST)26403381 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kayfetz, Karen  |e verfasserin  |4 aut 
245 1 0 |a Abiotic and biotic controls on the copepod Pseudodiaptomus forbesi in the upper San Francisco Estuary 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Salinity is a key control on species distribution in estuaries, but interspecific interactions can shift distributions of estuarine species away from physiologically optimal salinities. The distribution of the introduced calanoid copepod Pseudodiaptomus forbesi in the upper San Francisco Estuary (SFE) shifted from brackish to fresh water in 1993 following the introductions of 2 brackish-water copepods, the small but numerically dominant Limnoithona tetraspina (Cyclopoida) and the predatory Acartiella sinensis (Calanoida). The nearly simultaneous timing of these introductions complicated interpretation of the temporal change in distribution of P. forbesi. Although P. forbesi is now uncommon at salinity >∼2, which might be interpreted as the result of salinity stress, short-term experiments showed high survival of adults up to salinity ∼8 and of nauplii to salinity of at least 14, and reproduction was highest at salinity 5. Feeding experiments showed some overlap in diets of P. forbesi and L. tetraspina, but P. forbesi consumed a broader range of prey than L. tetraspina. Furthermore, feeding rates of the L. tetraspina population appeared insufficient to reduce prey availability to P. forbesi. Previous reports of high consumption of nauplii by A. sinensis and the clam Potamocorbula amurensis suggest that these interspecific interactions are important in constraining the distribution of P. forbesi in the upper SFE. Thus, we interpret the temporal shift in distribution of P. forbesi as due mainly to the introduction of the predatory copepod, whose high abundance may have been facilitated by the availability of a common alternative prey, L. tetraspina. 
540 |a © The authors 2017 
650 4 |a Competition 
650 4 |a Distribution 
650 4 |a Facilitation 
650 4 |a Low-salinity zone 
650 4 |a Food web 
650 4 |a Limnoithona tetraspina 
650 4 |a Salinity tolerance 
655 4 |a research-article 
700 1 |a Kimmerer, Wim  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Marine Ecology Progress Series  |d Inter-Research, 1979  |g 581(2017) vom: Okt., Seite 85-101  |w (DE-627)320617998  |w (DE-600)2022265-8  |x 16161599  |7 nnns 
773 1 8 |g volume:581  |g year:2017  |g month:10  |g pages:85-101 
856 4 0 |u https://www.jstor.org/stable/26403381  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_381 
912 |a GBV_ILN_602 
912 |a GBV_ILN_647 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 581  |j 2017  |c 10  |h 85-101