On Mixing-Like Notions in Infinite Measure

Measurable dynamical systems are defined on a measure space, such as the unit interval or the real line, with a transformation or map acting on the space. After discussing dynamical properties for probability spaces such as ergodicity, weak mixing, and mixing, we consider analogs of mixing and weak...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The American Mathematical Monthly. - Mathematical Association of America. - 124(2017), 9, Seite 807-825
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2017
Zugriff auf das übergeordnete Werk:The American Mathematical Monthly
Schlagworte:Applied sciences Mathematics Philosophy Arts
LEADER 01000caa a22002652 4500
001 JST127881840
003 DE-627
005 20240625110337.0
007 cr uuu---uuuuu
008 210116s2017 xx |||||o 00| ||eng c
024 7 |a 10.4169/amer.math.monthly.124.9.807  |2 doi 
035 |a (DE-627)JST127881840 
035 |a (JST)amer.math.monthly.124.9.807 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
245 1 0 |a On Mixing-Like Notions in Infinite Measure 
264 1 |c 2017 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Measurable dynamical systems are defined on a measure space, such as the unit interval or the real line, with a transformation or map acting on the space. After discussing dynamical properties for probability spaces such as ergodicity, weak mixing, and mixing, we consider analogs of mixing and weak mixing in infinite measure, and present related examples and definitions that are the result of research with undergraduates. Rank-one transformations are introduced and used to construct the main examples. 
540 |a Copyright the Mathematical Association of America 2017 
650 4 |a Applied sciences  |x Systems science  |x Systems theory  |x Dynamical systems  |x Ergodic theory 
650 4 |a Mathematics  |x Pure mathematics  |x Discrete mathematics  |x Number theory  |x Numbers  |x Real numbers  |x Rational numbers  |x Integers 
650 4 |a Mathematics  |x Pure mathematics  |x Geometry  |x Geometric shapes  |x Polytopes  |x Polygons  |x Tetragons  |x Parallelograms  |x Rectangles 
650 4 |a Mathematics  |x Pure mathematics  |x Algebra  |x Polynomials  |x Dyadics 
650 4 |a Philosophy  |x Metaphysics  |x Philosophy of mind  |x Dualism  |x Cartesianism 
650 4 |a Arts  |x Applied arts  |x Architecture  |x Architectural elements  |x Stairways  |x Staircases 
650 4 |a Applied sciences  |x Technology  |x Tools  |x Measuring instruments  |x Distance measuring equipment  |x Odometers 
650 4 |a Mathematics  |x Mathematical objects  |x Mathematical intervals 
650 4 |a Applied sciences  |x Systems science  |x Systems theory  |x Dynamical systems  |x ARTICLES 
655 4 |a research-article 
773 0 8 |i Enthalten in  |t The American Mathematical Monthly  |d Mathematical Association of America  |g 124(2017), 9, Seite 807-825  |w (DE-627)270129901  |w (DE-600)1476746-6  |x 19300972  |7 nnns 
773 1 8 |g volume:124  |g year:2017  |g number:9  |g pages:807-825 
856 4 0 |u https://www.jstor.org/stable/10.4169/amer.math.monthly.124.9.807  |3 Volltext 
856 4 0 |u https://doi.org/10.4169/amer.math.monthly.124.9.807  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2947 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 124  |j 2017  |e 9  |h 807-825