|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
JST127881840 |
003 |
DE-627 |
005 |
20240625110337.0 |
007 |
cr uuu---uuuuu |
008 |
210116s2017 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.4169/amer.math.monthly.124.9.807
|2 doi
|
035 |
|
|
|a (DE-627)JST127881840
|
035 |
|
|
|a (JST)amer.math.monthly.124.9.807
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
245 |
1 |
0 |
|a On Mixing-Like Notions in Infinite Measure
|
264 |
|
1 |
|c 2017
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a Computermedien
|b c
|2 rdamedia
|
338 |
|
|
|a Online-Ressource
|b cr
|2 rdacarrier
|
520 |
|
|
|a Measurable dynamical systems are defined on a measure space, such as the unit interval or the real line, with a transformation or map acting on the space. After discussing dynamical properties for probability spaces such as ergodicity, weak mixing, and mixing, we consider analogs of mixing and weak mixing in infinite measure, and present related examples and definitions that are the result of research with undergraduates. Rank-one transformations are introduced and used to construct the main examples.
|
540 |
|
|
|a Copyright the Mathematical Association of America 2017
|
650 |
|
4 |
|a Applied sciences
|x Systems science
|x Systems theory
|x Dynamical systems
|x Ergodic theory
|
650 |
|
4 |
|a Mathematics
|x Pure mathematics
|x Discrete mathematics
|x Number theory
|x Numbers
|x Real numbers
|x Rational numbers
|x Integers
|
650 |
|
4 |
|a Mathematics
|x Pure mathematics
|x Geometry
|x Geometric shapes
|x Polytopes
|x Polygons
|x Tetragons
|x Parallelograms
|x Rectangles
|
650 |
|
4 |
|a Mathematics
|x Pure mathematics
|x Algebra
|x Polynomials
|x Dyadics
|
650 |
|
4 |
|a Philosophy
|x Metaphysics
|x Philosophy of mind
|x Dualism
|x Cartesianism
|
650 |
|
4 |
|a Arts
|x Applied arts
|x Architecture
|x Architectural elements
|x Stairways
|x Staircases
|
650 |
|
4 |
|a Applied sciences
|x Technology
|x Tools
|x Measuring instruments
|x Distance measuring equipment
|x Odometers
|
650 |
|
4 |
|a Mathematics
|x Mathematical objects
|x Mathematical intervals
|
650 |
|
4 |
|a Applied sciences
|x Systems science
|x Systems theory
|x Dynamical systems
|x ARTICLES
|
655 |
|
4 |
|a research-article
|
773 |
0 |
8 |
|i Enthalten in
|t The American Mathematical Monthly
|d Mathematical Association of America
|g 124(2017), 9, Seite 807-825
|w (DE-627)270129901
|w (DE-600)1476746-6
|x 19300972
|7 nnns
|
773 |
1 |
8 |
|g volume:124
|g year:2017
|g number:9
|g pages:807-825
|
856 |
4 |
0 |
|u https://www.jstor.org/stable/10.4169/amer.math.monthly.124.9.807
|3 Volltext
|
856 |
4 |
0 |
|u https://doi.org/10.4169/amer.math.monthly.124.9.807
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_JST
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_20
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_23
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_31
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_63
|
912 |
|
|
|a GBV_ILN_69
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_73
|
912 |
|
|
|a GBV_ILN_90
|
912 |
|
|
|a GBV_ILN_95
|
912 |
|
|
|a GBV_ILN_100
|
912 |
|
|
|a GBV_ILN_105
|
912 |
|
|
|a GBV_ILN_110
|
912 |
|
|
|a GBV_ILN_120
|
912 |
|
|
|a GBV_ILN_151
|
912 |
|
|
|a GBV_ILN_161
|
912 |
|
|
|a GBV_ILN_170
|
912 |
|
|
|a GBV_ILN_213
|
912 |
|
|
|a GBV_ILN_224
|
912 |
|
|
|a GBV_ILN_230
|
912 |
|
|
|a GBV_ILN_285
|
912 |
|
|
|a GBV_ILN_293
|
912 |
|
|
|a GBV_ILN_370
|
912 |
|
|
|a GBV_ILN_374
|
912 |
|
|
|a GBV_ILN_602
|
912 |
|
|
|a GBV_ILN_702
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2007
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2011
|
912 |
|
|
|a GBV_ILN_2014
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2020
|
912 |
|
|
|a GBV_ILN_2021
|
912 |
|
|
|a GBV_ILN_2026
|
912 |
|
|
|a GBV_ILN_2027
|
912 |
|
|
|a GBV_ILN_2034
|
912 |
|
|
|a GBV_ILN_2039
|
912 |
|
|
|a GBV_ILN_2044
|
912 |
|
|
|a GBV_ILN_2050
|
912 |
|
|
|a GBV_ILN_2056
|
912 |
|
|
|a GBV_ILN_2057
|
912 |
|
|
|a GBV_ILN_2061
|
912 |
|
|
|a GBV_ILN_2088
|
912 |
|
|
|a GBV_ILN_2107
|
912 |
|
|
|a GBV_ILN_2110
|
912 |
|
|
|a GBV_ILN_2111
|
912 |
|
|
|a GBV_ILN_2129
|
912 |
|
|
|a GBV_ILN_2190
|
912 |
|
|
|a GBV_ILN_2507
|
912 |
|
|
|a GBV_ILN_2932
|
912 |
|
|
|a GBV_ILN_2947
|
912 |
|
|
|a GBV_ILN_2949
|
912 |
|
|
|a GBV_ILN_2950
|
912 |
|
|
|a GBV_ILN_4012
|
912 |
|
|
|a GBV_ILN_4035
|
912 |
|
|
|a GBV_ILN_4037
|
912 |
|
|
|a GBV_ILN_4046
|
912 |
|
|
|a GBV_ILN_4112
|
912 |
|
|
|a GBV_ILN_4125
|
912 |
|
|
|a GBV_ILN_4126
|
912 |
|
|
|a GBV_ILN_4242
|
912 |
|
|
|a GBV_ILN_4249
|
912 |
|
|
|a GBV_ILN_4251
|
912 |
|
|
|a GBV_ILN_4305
|
912 |
|
|
|a GBV_ILN_4306
|
912 |
|
|
|a GBV_ILN_4307
|
912 |
|
|
|a GBV_ILN_4313
|
912 |
|
|
|a GBV_ILN_4322
|
912 |
|
|
|a GBV_ILN_4323
|
912 |
|
|
|a GBV_ILN_4324
|
912 |
|
|
|a GBV_ILN_4325
|
912 |
|
|
|a GBV_ILN_4326
|
912 |
|
|
|a GBV_ILN_4335
|
912 |
|
|
|a GBV_ILN_4338
|
912 |
|
|
|a GBV_ILN_4346
|
912 |
|
|
|a GBV_ILN_4367
|
912 |
|
|
|a GBV_ILN_4393
|
912 |
|
|
|a GBV_ILN_4700
|
951 |
|
|
|a AR
|
952 |
|
|
|d 124
|j 2017
|e 9
|h 807-825
|