|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
JST126547173 |
003 |
DE-627 |
005 |
20240625094827.0 |
007 |
cr uuu---uuuuu |
008 |
191004s2019 xx |||||o 00| ||eng c |
035 |
|
|
|a (DE-627)JST126547173
|
035 |
|
|
|a (JST)26730893
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a VOGT, Isabel
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Abelian varieties isogenous to a power of an elliptic curve over a Galois extension
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a Computermedien
|b c
|2 rdamedia
|
338 |
|
|
|a Online-Ressource
|b cr
|2 rdacarrier
|
520 |
|
|
|a Soient E/κ une courbe elliptique et κ′/κ une extension de Galois. On construit un foncteur exact de la catégorie des modules sans torsion sur l’anneau des endomorphismes End Eκ′ munis d’une action semi-linéaire de Gal(κ′/κ) vers la catégorie des variétés algébriques sur κ qui sont κ′-isogènes à une puissance de E. Comme application, on donne une preuve simple du fait que toute courbe elliptique sur κ qui est géométriquement à multiplication complexe, est isogène sur κ à une courbe elliptique à multiplication complexe par un ordre maximal. Given an elliptic curve E/κ and a Galois extension κ′/κ, we construct an exact functor from torsion-free modules over the endomorphism ring End Eκ′ with a semilinear Gal(κ′/κ) action to abelian varieties over κ that are κ′-isogenous to a power of E. As an application, we give a simple proof that every elliptic curve with complex multiplication geometrically is isogenous over the ground field to one with complex multiplication by a maximal order.
|
540 |
|
|
|a © Société Arithmétique de Bordeaux, 2019
|
650 |
|
4 |
|a Mathematics
|x Pure mathematics
|x Category theory
|x Morphisms
|x Functors
|
650 |
|
4 |
|a Philosophy
|x Logic
|x Logical topics
|x Formal logic
|x Propositional logic
|x Commutativity
|
650 |
|
4 |
|a Mathematics
|x Pure mathematics
|x Geometry
|x Geometric shapes
|x Curves
|
650 |
|
4 |
|a Mathematics
|x Mathematical objects
|x Mathematical rings
|
650 |
|
4 |
|a Mathematics
|x Pure mathematics
|x Linear algebra
|x Vector analysis
|x Vector operations
|x Scalars
|
650 |
|
4 |
|a Applied sciences
|x Computer science
|x Computer programming
|x Function objects
|
650 |
|
4 |
|a Mathematics
|x Mathematical expressions
|x Mathematical theorems
|
650 |
|
4 |
|a Mathematics
|x Pure mathematics
|x Algebra
|
650 |
|
4 |
|a Mathematics
|x Pure mathematics
|x Category theory
|x Morphisms
|
655 |
|
4 |
|a research-article
|
773 |
0 |
8 |
|i Enthalten in
|t Journal de Théorie des Nombres de Bordeaux
|d Société Arithmétique de Bordeaux, 1993
|g 31(2019), 1, Seite 205-213
|w (DE-627)320967603
|w (DE-600)2028468-8
|x 21188572
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:1
|g pages:205-213
|
856 |
4 |
0 |
|u https://www.jstor.org/stable/26730893
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_JST
|
912 |
|
|
|a GBV_ILN_11
|
912 |
|
|
|a GBV_ILN_20
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_23
|
912 |
|
|
|a GBV_ILN_24
|
912 |
|
|
|a GBV_ILN_31
|
912 |
|
|
|a GBV_ILN_39
|
912 |
|
|
|a GBV_ILN_40
|
912 |
|
|
|a GBV_ILN_60
|
912 |
|
|
|a GBV_ILN_62
|
912 |
|
|
|a GBV_ILN_63
|
912 |
|
|
|a GBV_ILN_65
|
912 |
|
|
|a GBV_ILN_69
|
912 |
|
|
|a GBV_ILN_70
|
912 |
|
|
|a GBV_ILN_73
|
912 |
|
|
|a GBV_ILN_95
|
912 |
|
|
|a GBV_ILN_100
|
912 |
|
|
|a GBV_ILN_101
|
912 |
|
|
|a GBV_ILN_105
|
912 |
|
|
|a GBV_ILN_110
|
912 |
|
|
|a GBV_ILN_120
|
912 |
|
|
|a GBV_ILN_151
|
912 |
|
|
|a GBV_ILN_161
|
912 |
|
|
|a GBV_ILN_170
|
912 |
|
|
|a GBV_ILN_213
|
912 |
|
|
|a GBV_ILN_230
|
912 |
|
|
|a GBV_ILN_285
|
912 |
|
|
|a GBV_ILN_293
|
912 |
|
|
|a GBV_ILN_370
|
912 |
|
|
|a GBV_ILN_602
|
912 |
|
|
|a GBV_ILN_702
|
912 |
|
|
|a GBV_ILN_2001
|
912 |
|
|
|a GBV_ILN_2003
|
912 |
|
|
|a GBV_ILN_2005
|
912 |
|
|
|a GBV_ILN_2006
|
912 |
|
|
|a GBV_ILN_2008
|
912 |
|
|
|a GBV_ILN_2009
|
912 |
|
|
|a GBV_ILN_2010
|
912 |
|
|
|a GBV_ILN_2011
|
912 |
|
|
|a GBV_ILN_2014
|
912 |
|
|
|a GBV_ILN_2015
|
912 |
|
|
|a GBV_ILN_2018
|
912 |
|
|
|a GBV_ILN_2020
|
912 |
|
|
|a GBV_ILN_2021
|
912 |
|
|
|a GBV_ILN_2026
|
912 |
|
|
|a GBV_ILN_2027
|
912 |
|
|
|a GBV_ILN_2044
|
912 |
|
|
|a GBV_ILN_2050
|
912 |
|
|
|a GBV_ILN_2056
|
912 |
|
|
|a GBV_ILN_2057
|
912 |
|
|
|a GBV_ILN_2061
|
912 |
|
|
|a GBV_ILN_2088
|
912 |
|
|
|a GBV_ILN_2107
|
912 |
|
|
|a GBV_ILN_2110
|
912 |
|
|
|a GBV_ILN_2190
|
912 |
|
|
|a GBV_ILN_2949
|
912 |
|
|
|a GBV_ILN_2950
|
912 |
|
|
|a GBV_ILN_4012
|
912 |
|
|
|a GBV_ILN_4035
|
912 |
|
|
|a GBV_ILN_4037
|
912 |
|
|
|a GBV_ILN_4046
|
912 |
|
|
|a GBV_ILN_4112
|
912 |
|
|
|a GBV_ILN_4125
|
912 |
|
|
|a GBV_ILN_4126
|
912 |
|
|
|a GBV_ILN_4242
|
912 |
|
|
|a GBV_ILN_4249
|
912 |
|
|
|a GBV_ILN_4251
|
912 |
|
|
|a GBV_ILN_4305
|
912 |
|
|
|a GBV_ILN_4306
|
912 |
|
|
|a GBV_ILN_4307
|
912 |
|
|
|a GBV_ILN_4313
|
912 |
|
|
|a GBV_ILN_4322
|
912 |
|
|
|a GBV_ILN_4323
|
912 |
|
|
|a GBV_ILN_4324
|
912 |
|
|
|a GBV_ILN_4325
|
912 |
|
|
|a GBV_ILN_4326
|
912 |
|
|
|a GBV_ILN_4335
|
912 |
|
|
|a GBV_ILN_4338
|
912 |
|
|
|a GBV_ILN_4346
|
912 |
|
|
|a GBV_ILN_4367
|
912 |
|
|
|a GBV_ILN_4393
|
912 |
|
|
|a GBV_ILN_4700
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 1
|h 205-213
|