CAPTURING FRESH LAYERS WITH THE SURFACE SALINITY PROFILER

During the second Salinity Processes in the Upper-ocean Regional Study (SPURS-2) field experiments in 2016 and 2017 in the eastern tropical Pacific Ocean, the surface salinity profiler (SSP) measured temperature and salinity profiles in the upper 1.1 m of the ocean. The SSP captured the response of...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Oceanography. - Oceanography Society. - 32(2019), 2, Seite 76-85
1. Verfasser: Drushka, Kyla (VerfasserIn)
Weitere Verfasser: Asher, William E., Jessup, Andrew T., Thompson, Elizabeth J., Iyer, Suneil, Clark, Dan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Oceanography
Schlagworte:Physical sciences Environmental studies Applied sciences Mathematics
LEADER 01000caa a22002652 4500
001 JST126523002
003 DE-627
005 20240625094730.0
007 cr uuu---uuuuu
008 190912s2019 xx |||||o 00| ||eng c
035 |a (DE-627)JST126523002 
035 |a (JST)26651183 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Drushka, Kyla  |e verfasserin  |4 aut 
245 1 0 |a CAPTURING FRESH LAYERS WITH THE SURFACE SALINITY PROFILER 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a During the second Salinity Processes in the Upper-ocean Regional Study (SPURS-2) field experiments in 2016 and 2017 in the eastern tropical Pacific Ocean, the surface salinity profiler (SSP) measured temperature and salinity profiles in the upper 1.1 m of the ocean. The SSP captured the response of the ocean surface to 35 rain events, providing insight into the generation and evolution of rain-formed fresh layers. This paper describes the measurements made with the SSP during SPURS-2 and quantifies the fresh layers in terms of their vertical salinity gradients between 0.05 m and 1.1 m, ΔS 1.1–0.05m. For the 35 rain events sampled with the SSP in 2016 and 2017, the maximum value of ΔS 1.1–0.05m is well correlated with the accumulated rainfall. The maximum value of ΔS 1.1–0.05m is shown to be linearly proportional to the maximum rain rate and inversely proportional to the wind speed. This wind speed-dependent relationship shows a high degree of scatter, reflecting that the vertical salinity gradient formed during any individual rain event depends on the complex interaction between the local ocean dynamics and the highly variable forcing from rain and wind. 
540 |a © Author(s) 2019 
650 4 |a Physical sciences  |x Chemistry  |x Chemical properties  |x Salinity 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Oceans 
650 4 |a Physical sciences  |x Physics  |x Mechanics  |x Classical mechanics  |x Kinetics  |x Linear dynamics  |x Velocity  |x Wind velocity 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Meteorology  |x Hydrometeorology  |x Precipitation  |x Rain  |x Rainfall 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Meteorology  |x Hydrometeorology  |x Precipitation  |x Rain 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Oceans  |x Ocean surface 
650 4 |a Applied sciences  |x Engineering  |x Transportation  |x Vehicles  |x Watercraft  |x Ships 
650 4 |a Applied sciences  |x Technology  |x Tools  |x Measuring instruments  |x Sensors 
650 4 |a Physical sciences  |x Earth sciences  |x Oceanography  |x Ocean dynamics  |x Ocean currents 
650 4 |a Mathematics  |x Pure mathematics  |x Algebra  |x Coefficients  |x SPECIAL ISSUE ON SPURS-2: SALINITY PROCESSES IN THE UPPER-OCEAN REGIONAL STUDY 2 
655 4 |a research-article 
700 1 |a Asher, William E.  |e verfasserin  |4 aut 
700 1 |a Jessup, Andrew T.  |e verfasserin  |4 aut 
700 1 |a Thompson, Elizabeth J.  |e verfasserin  |4 aut 
700 1 |a Iyer, Suneil  |e verfasserin  |4 aut 
700 1 |a Clark, Dan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Oceanography  |d Oceanography Society  |g 32(2019), 2, Seite 76-85  |w (DE-627)523860986  |w (DE-600)2268693-9  |x 2377617X  |7 nnns 
773 1 8 |g volume:32  |g year:2019  |g number:2  |g pages:76-85 
856 4 0 |u https://www.jstor.org/stable/26651183  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 32  |j 2019  |e 2  |h 76-85