Landscape and environmental controls over leaf and ecosystem carbon dioxide fluxes under woody plant expansion

1. Many regions of the globe are experiencing a simultaneous change in the dominant plant functional type and regional climatology. We explored how atmospheric temperature and precipitation control leaf- and ecosystem-scale carbon fluxes within a pair of semi-arid shrublands, one upland and one ripa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of Ecology. - Cambridge University Press, 1913. - 101(2013), 6, Seite 1471-1483
1. Verfasser: Barron-Gafford, Greg A. (VerfasserIn)
Weitere Verfasser: Scott, Russell L., Jenerette, G. Darrel, Hamerlynck, Erik P., Huxman, Travis E.
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Journal of Ecology
Schlagworte:Biological sciences Physical sciences Environmental studies
LEADER 01000caa a22002652 4500
001 JST124941788
003 DE-627
005 20240625082935.0
007 cr uuu---uuuuu
008 190103s2013 xx |||||o 00| ||eng c
035 |a (DE-627)JST124941788 
035 |a (JST)42580380 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Barron-Gafford, Greg A.  |e verfasserin  |4 aut 
245 1 0 |a Landscape and environmental controls over leaf and ecosystem carbon dioxide fluxes under woody plant expansion 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a 1. Many regions of the globe are experiencing a simultaneous change in the dominant plant functional type and regional climatology. We explored how atmospheric temperature and precipitation control leaf- and ecosystem-scale carbon fluxes within a pair of semi-arid shrublands, one upland and one riparian, that have undergone woody plant expansion. 2. Through a combination of leaf-level measurements on individual bunchgrasses and mesquites shrubs and ecosystem-scale monitoring using eddy covariance techniques, we sought to quantify rates of net carbon dioxide (CO₂) flux, CO₂ flux temperature sensitivity and the responsiveness of these parameters to seasonal rains and periods of soil dry-down. 3. We found significant differences in physiological acclimation between the two plant functional types, in that the shrubs consistently conducted photosynthesis across a broader temperature range than co-occurring grasses during dry periods, yet maximum photosynthetic rates in grasses were twice that of mesquites during the wetter monsoon season. Landscape position modulated these temperature sensitivities, as the range of functional temperatures and maximum rates of photosynthesis were two to three times greater within the riparian shrubland in dry times. 4. Also, it was unexpected that ecosystem-scale CO₂ uptake within both shrublands would become most temperature sensitive within the monsoon, when mesquites and grasses had their broadest range of function. This is probably explained by the changing contributions of component photosynthetic fluxes, in that the more temperature sensitive grasses, which had higher maximal rates of photosynthesis, became a larger component of the ecosystem flux. 5. Synthesis: Given projections of more variable precipitation and increased temperatures, it is important to understand differences in physiological activity between growth forms, as they are likely to drive patterns of ecosystem-scale CO₂ flux. As access to stable subsurface water declines with decreased precipitation, these differential patterns of temperature sensitivity among growth forms, which are dependent on connectivity to groundwater, will only become more important in determining ecosystem carbon source/sink status. 
540 |a © 2013 British Ecological Society 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Topography  |x Highlands 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Meteorology  |x Atmospheric physics  |x Atmospheric circulation  |x Wind  |x Monsoons 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Biological sciences  |x Ecology  |x Plant ecology 
650 4 |a Biological sciences  |x Ecology  |x Aquatic ecology  |x Marine ecology  |x Riparian ecology 
650 4 |a Biological sciences  |x Ecology  |x Human ecology 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems  |x Biomes  |x Shrublands 
650 4 |a Environmental studies  |x Atmospheric sciences  |x Meteorology  |x Hydrometeorology  |x Precipitation 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants  |x Grasses  |x Plant-climate interactions 
655 4 |a research-article 
700 1 |a Scott, Russell L.  |e verfasserin  |4 aut 
700 1 |a Jenerette, G. Darrel  |e verfasserin  |4 aut 
700 1 |a Hamerlynck, Erik P.  |e verfasserin  |4 aut 
700 1 |a Huxman, Travis E.  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of Ecology  |d Cambridge University Press, 1913  |g 101(2013), 6, Seite 1471-1483  |w (DE-627)311851835  |w (DE-600)2004136-6  |x 13652745  |7 nnns 
773 1 8 |g volume:101  |g year:2013  |g number:6  |g pages:1471-1483 
856 4 0 |u http://dx.doi.org/10.1111/1365-2745.12161  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_101 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_647 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2031 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2039 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2112 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2360 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2932 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2942 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2950 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 101  |j 2013  |e 6  |h 1471-1483