Remediation of Nonaqueous Phase Liquid Polluted Sites Using Surfactant-Enhanced Air Sparging and Soil Vapor Extraction

A two-dimensional laboratory sand tank was installed to study the remediation efficiency of surfactant-enhanced air sparging(-SEAS) coupled with soil vapor extraction (SVE) in nonaqueous phase liquid(NAPL) polluted sites. During initial stages of remediation, it was more reasonable to use convention...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water Environment Research. - THE WATER ENVIRONMENT FEDERATION. - 85(2013), 2, Seite 133-140
1. Verfasser: Qin, Chuan-yu (VerfasserIn)
Weitere Verfasser: Zhao, Yong-sheng, Su, Yan, Zheng, Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2013
Zugriff auf das übergeordnete Werk:Water Environment Research
Schlagworte:Physical sciences Applied sciences Environmental studies Business Biological sciences
LEADER 01000caa a22002652 4500
001 JST124939716
003 DE-627
005 20240625082916.0
007 cr uuu---uuuuu
008 190103s2013 xx |||||o 00| ||eng c
035 |a (DE-627)JST124939716 
035 |a (JST)42569417 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Qin, Chuan-yu  |e verfasserin  |4 aut 
245 1 0 |a Remediation of Nonaqueous Phase Liquid Polluted Sites Using Surfactant-Enhanced Air Sparging and Soil Vapor Extraction 
264 1 |c 2013 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a A two-dimensional laboratory sand tank was installed to study the remediation efficiency of surfactant-enhanced air sparging(-SEAS) coupled with soil vapor extraction (SVE) in nonaqueous phase liquid(NAPL) polluted sites. During initial stages of remediation, it was more reasonable to use conventional air sparging coupled with SVE. When most free NAPLs were removed and contaminant removal rate was maintained at a relatively low level, surfactant was added to the groundwater. During enhanced remediation, lower interfacial tension caused residual NAPLs in the porous media to slightly migrate, making the downstream contaminant concentration somewhat higher. The polluted area, however, was not more enlarged than before. The decrease in surface tension resulted in increased air saturation in the groundwater and the extent of the air influence zone. After 310 hours, 78.7% of the initial chlorobenzene mass had volatilized, 3.3% had migrated out of the sand profile, 17.5% was in the vadose zone, and 0.5% remained in the groundwater, thus revealing that SEAS/SVE can effectively improve the remediation of NAPL polluted sites. 
540 |a © 2013 WATER ENVIRONMENT FEDERATION 
650 4 |a Physical sciences  |x Earth sciences  |x Hydrology  |x Limnology  |x Surface water  |x Groundwater 
650 4 |a Applied sciences  |x Technology  |x Environmental technology  |x Air sparging 
650 4 |a Physical sciences  |x Chemistry  |x Chemical compounds  |x Functional groups  |x Hydroxyls  |x Alcohols  |x Phenols  |x Chlorophenols 
650 4 |a Environmental studies  |x Environmental quality  |x Environmental degradation  |x Environmental pollution  |x Soil pollution 
650 4 |a Physical sciences  |x Materials science  |x Surface science  |x Interface phenomena  |x Interfacial tension 
650 4 |a Business  |x Industry  |x Industrial sectors  |x Manufacturing industries  |x Chemicals industries  |x Chemical products  |x Cleaning compounds  |x Surfactants 
650 4 |a Applied sciences  |x Engineering  |x Environmental engineering  |x Pollution control  |x Soil remediation 
650 4 |a Environmental studies  |x Environmental quality  |x Environmental degradation  |x Environmental pollution  |x Pollutants  |x Nonaqueous phase liquids 
650 4 |a Physical sciences  |x Earth sciences  |x Geography  |x Geomorphology  |x Bodies of water  |x Seas 
650 4 |a Biological sciences  |x Ecology  |x Applied ecology  |x Environmental management  |x Environmental remediation 
655 4 |a research-article 
700 1 |a Zhao, Yong-sheng  |e verfasserin  |4 aut 
700 1 |a Su, Yan  |e verfasserin  |4 aut 
700 1 |a Zheng, Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water Environment Research  |d THE WATER ENVIRONMENT FEDERATION  |g 85(2013), 2, Seite 133-140  |w (DE-627)592375684  |w (DE-600)2051010-X  |x 15547531  |7 nnns 
773 1 8 |g volume:85  |g year:2013  |g number:2  |g pages:133-140 
856 4 0 |u http://dx.doi.org/10.2175/106143012X13560205144173  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_32 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_74 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_138 
912 |a GBV_ILN_150 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_171 
912 |a GBV_ILN_187 
912 |a GBV_ILN_213 
912 |a GBV_ILN_224 
912 |a GBV_ILN_230 
912 |a GBV_ILN_266 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_636 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2025 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2034 
912 |a GBV_ILN_2037 
912 |a GBV_ILN_2038 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2048 
912 |a GBV_ILN_2049 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2055 
912 |a GBV_ILN_2056 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2059 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2064 
912 |a GBV_ILN_2068 
912 |a GBV_ILN_2088 
912 |a GBV_ILN_2093 
912 |a GBV_ILN_2106 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2108 
912 |a GBV_ILN_2110 
912 |a GBV_ILN_2111 
912 |a GBV_ILN_2113 
912 |a GBV_ILN_2118 
912 |a GBV_ILN_2119 
912 |a GBV_ILN_2122 
912 |a GBV_ILN_2129 
912 |a GBV_ILN_2143 
912 |a GBV_ILN_2144 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2152 
912 |a GBV_ILN_2153 
912 |a GBV_ILN_2188 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2232 
912 |a GBV_ILN_2336 
912 |a GBV_ILN_2470 
912 |a GBV_ILN_2472 
912 |a GBV_ILN_2507 
912 |a GBV_ILN_2522 
912 |a GBV_ILN_2548 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4246 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4326 
912 |a GBV_ILN_4333 
912 |a GBV_ILN_4334 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4336 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 85  |j 2013  |e 2  |h 133-140