Mapping Plant Functional Groups in Subalpine Grassland of the Greater Caucasus

Plant functional groups—in our case grass, herbs, and legumes—and their spatial distribution can provide information on key ecosystem functions such as species richness, nitrogen fixation, and erosion control. Knowledge about the spatial distribution of plant functional groups provides valuable info...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Mountain Research and Development. - International Mountain Society. - 38(2018), 1, Seite 63-72
1. Verfasser: Magiera, Anja (VerfasserIn)
Weitere Verfasser: Feilhauer, Hannes, Waldhardt, Rainer, Wiesmair, Martin, Otte, Annette
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Mountain Research and Development
Schlagworte:Remote sensing subalpine grassland composition random forest spatial distribution of grass grass cover herb cover legume cover Georgia Applied sciences Biological sciences
LEADER 01000caa a22002652 4500
001 JST122080742
003 DE-627
005 20240625055847.0
007 cr uuu---uuuuu
008 180721s2018 xx |||||o 00| ||eng c
035 |a (DE-627)JST122080742 
035 |a (JST)90020672 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Magiera, Anja  |e verfasserin  |4 aut 
245 1 0 |a Mapping Plant Functional Groups in Subalpine Grassland of the Greater Caucasus 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a Computermedien  |b c  |2 rdamedia 
338 |a Online-Ressource  |b cr  |2 rdacarrier 
520 |a Plant functional groups—in our case grass, herbs, and legumes—and their spatial distribution can provide information on key ecosystem functions such as species richness, nitrogen fixation, and erosion control. Knowledge about the spatial distribution of plant functional groups provides valuable information for grassland management. This study described and mapped the distribution of grass, herb, and legume coverage of the subalpine grassland in the high-mountain Kazbegi region, Greater Caucasus, Georgia. To test the applicability of new sensors, we compared the predictive power of simulated hyperspectral canopy reflectance, simulated multispectral reflectance, simulated vegetation indices, and topographic variables for modeling plant functional groups. The tested grassland showed characteristic differences in species richness; in grass, herb, and legume coverage; and in connected structural properties such as yield. Grass (Hordeum brevisubulatum) was dominant in biomassrich hay meadows. Herb-rich grassland featured the highest species richness and evenness, whereas legume-rich grassland was accompanied by a high coverage of open soil and showed dominance of a single species,Astragalus captiosus. The best model fits were achieved with a combination of reflectance, vegetation indices, and topographic variables as predictors. Random forest models for grass, herb, and legume coverage explained 36%, 25%, and 37% of the respective variance, and their root mean square errors varied between 12–15%. Hyperspectral and multispectral reflectance as predictors resulted in similar models. Because multispectral data are more easily available and often have a higher spatial resolution, we suggest using multispectral parameters enhanced by vegetation indices and topographic parameters for modeling grass, herb, and legume coverage. However, overall model fits were merely moderate, and further testing, including stronger gradients and the addition of shortwave infrared wavelengths, is needed. 
540 |a © 2018 Mingyu Yang et al. 
650 4 |a Remote sensing 
650 4 |a subalpine grassland composition 
650 4 |a random forest 
650 4 |a spatial distribution of grass 
650 4 |a grass cover 
650 4 |a herb cover 
650 4 |a legume cover 
650 4 |a Georgia 
650 4 |a Applied sciences  |x Food science  |x Foodstuffs  |x Food  |x Edible seeds  |x Legumes 
650 4 |a Biological sciences  |x Agriculture  |x Agricultural products  |x Plant products  |x Herbs 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plant ecology  |x Vegetation 
650 4 |a Biological sciences  |x Ecology  |x Ecosystems  |x Biomes  |x Grasslands  |x Mountain grasslands 
650 4 |a Biological sciences  |x Ecology  |x Applied ecology  |x Environmental management  |x Natural resource management  |x Ecosystem management  |x Grassland management 
650 4 |a Applied sciences  |x Research methods  |x Vegetation index 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants  |x Grasses 
650 4 |a Biological sciences  |x Biology  |x Botany  |x Plants 
650 4 |a Applied sciences  |x Research methods  |x Modeling 
650 4 |a Applied sciences  |x Research methods  |x Modeling  |x Simulations  |x MountainResearch  |x Systems knowledge 
655 4 |a research-article 
700 1 |a Feilhauer, Hannes  |e verfasserin  |4 aut 
700 1 |a Waldhardt, Rainer  |e verfasserin  |4 aut 
700 1 |a Wiesmair, Martin  |e verfasserin  |4 aut 
700 1 |a Otte, Annette  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Mountain Research and Development  |d International Mountain Society  |g 38(2018), 1, Seite 63-72  |w (DE-627)477530710  |w (DE-600)2173778-2  |x 19947151  |7 nnns 
773 1 8 |g volume:38  |g year:2018  |g number:1  |g pages:63-72 
856 4 0 |u https://www.jstor.org/stable/90020672  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_JST 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_23 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_60 
912 |a GBV_ILN_62 
912 |a GBV_ILN_63 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_73 
912 |a GBV_ILN_90 
912 |a GBV_ILN_95 
912 |a GBV_ILN_100 
912 |a GBV_ILN_105 
912 |a GBV_ILN_110 
912 |a GBV_ILN_120 
912 |a GBV_ILN_151 
912 |a GBV_ILN_161 
912 |a GBV_ILN_170 
912 |a GBV_ILN_213 
912 |a GBV_ILN_230 
912 |a GBV_ILN_285 
912 |a GBV_ILN_293 
912 |a GBV_ILN_370 
912 |a GBV_ILN_374 
912 |a GBV_ILN_602 
912 |a GBV_ILN_702 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2014 
912 |a GBV_ILN_2015 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2021 
912 |a GBV_ILN_2026 
912 |a GBV_ILN_2027 
912 |a GBV_ILN_2044 
912 |a GBV_ILN_2050 
912 |a GBV_ILN_2057 
912 |a GBV_ILN_2061 
912 |a GBV_ILN_2107 
912 |a GBV_ILN_2147 
912 |a GBV_ILN_2148 
912 |a GBV_ILN_2190 
912 |a GBV_ILN_2939 
912 |a GBV_ILN_2946 
912 |a GBV_ILN_2949 
912 |a GBV_ILN_2951 
912 |a GBV_ILN_4012 
912 |a GBV_ILN_4035 
912 |a GBV_ILN_4037 
912 |a GBV_ILN_4046 
912 |a GBV_ILN_4112 
912 |a GBV_ILN_4125 
912 |a GBV_ILN_4126 
912 |a GBV_ILN_4242 
912 |a GBV_ILN_4249 
912 |a GBV_ILN_4251 
912 |a GBV_ILN_4305 
912 |a GBV_ILN_4306 
912 |a GBV_ILN_4307 
912 |a GBV_ILN_4313 
912 |a GBV_ILN_4322 
912 |a GBV_ILN_4323 
912 |a GBV_ILN_4324 
912 |a GBV_ILN_4325 
912 |a GBV_ILN_4335 
912 |a GBV_ILN_4338 
912 |a GBV_ILN_4346 
912 |a GBV_ILN_4367 
912 |a GBV_ILN_4393 
912 |a GBV_ILN_4700 
951 |a AR 
952 |d 38  |j 2018  |e 1  |h 63-72